
BUILDING AN
ANALOG SYNTHESIZER

MATURA PAPER 2020

Sebastian Saner, 4A

SUPERVISION Christian Freiburghaus

2

Table of Contents
1 Abstract��3

2 Introduction ��3

2.1 History & Inspiration��3

2.2 Subtractive Synthesis��4

3 Main Section��6

3.1 Planning��6

3.2 Keyboard & Digital Section��7

3.2.1 Keyboard��7

3.2.2 MIDI��8

3.2.3 DAC��8

3.2.4 Code��8

3.3 Wooden Frame��8

3.4 Aluminium Panels��9

3.4.1 Cutting and drilling��9

3.4.2 Modulation & Pitch Wheels��9

3.4.3 Screen Printing ��10

3.5.1 Power Supply��11

3.5.2 Oscillator Bank��12

3.5.6 Mixer & Noise��14

3.5.3 Filter��15

3.5.4 Modulation ��15

3.5.5 ADSR, VCA & Outputs��15

3.6 User Manual ��18

3.6.1 Mode��18

3.6.2 Oscillator Bank��18

3.6.3 Mixer��18

3.6.4 Filter��19

3.6.5 Modulation Section and Wheels��19

3.6.6 Contour, Amplifier & Output ��20

4 Conclusion��21

5 Acknowledgements ��21

6 Appendix��22

6.1 Table of figures��22

6.2 Table of sources��22

6.2.3 Webpages��22

6.2.3 Books��22

6.3 Additional Pictures��23

6.4 Additional Schematics��24

6.5 Arduino Code (C++)��25

3

1 Abstract
My Matura project is about building an analog synthesizer. This paper will briefly cover the history of the invention and
the use in music of the synthesizer. In the main section, I will explain my planning and building. Additionally, I will explain
all the electronics and the code I wrote. Going into this project, I already had some experience in analog electronics and
synthesizers, altough not on a scale this large. At the end, I will talk about the difficulties and errors which showed up while
building. I will cover which ideas were worthwhile and which could be done differently in the future.

2 Introduction

2.1 History & Inspiration
Since the first electrical synthesized sounds by the Theremin in 1920 the world has seen many ways of making sounds out
of voltages and currents. Different methods span from additive to subtractive and even abstracter methods like frequency
modulation synthesis.
Synthesizers mainly synthesize sound waves. If a sound is inspected on the frequency spectrum, it consists of a base frequen-
cy and its overtones with higher frequencies. Besides the main frequency which gives the sound its pitch, the things that de-
scribe the overall timbre or colour, are its overtones also called harmonics. Those higher frequencies in the sound are mostly
integer multiples of the base frequency. The different amplitudes of those overtones appear as different sounding timbres.
This is also the reason why for example the sound of a violin can be distinguished from a saxophone. In additive synthesis
different sine waves are added up to produce a specific sound. On an electrical level this is hard to accomplish. In electronic
organs like the Hammond Organ from 1935 this was done by using close to a hundred spinning mechanical tonewheels, each
producing a single sinewave. Those were then added up to simulate overtones in a played note.
A different kind of synthesis called FM Synthesis or frequency modulation synthesis also became popular half a century later
with the first digital synthesizers like the DX7 in 1983. The DX7 used operators (sine wave oscillators) which modulated
eachothers phase. This type of distortion created glassy of bell-like overtones in the sound.
Subtractive synthesis approaches overtones from anot-
her point of view. Instead of adding up single frequen-
cies, we start out with a lot of overtones and then re-
move some of them using filters. Most early subtractive
synthesizers were big studio sized machines often using
vacuum tubes to generate sound. All of this changed
in 1964 when the American Engineer Robert Moog in-
vented his Moog Modular system. The Moog Modular
was smaller and more affordable than its predecessors. It
also allowed the user to connect a keyboard, which made
the Moog Modular very attractive for musicians.
The Moog Modular was still very expensive and only ac-
cessable for a few individuals. This changed when Moog released the Minimoog Model D in 1970, which quickly became
one of the most popular synthesizers around the world. The Minimoog was essentially a miniature version of the Moog
Modular. It featured the basic subtractive signal flow and a built-in keyboard. It also was the first synthesizer to feature a
so-called pitch-wheel to bend notes like on a guitar. It was constructed in suitcase-like design which made it convenient for
live shows. The Minimoog’s popularity was huge because it was not only used by the new upcoming progressive rock bands
but also in every other genre. The Minimoog defined the sound of experimental bands like Tangerine Dream or Kraftwerk.
Its simplicity and its warm fuzzy sounds made the Minimoog a success.
A downside of synthesizers back then was monophony. Because there was only one signal path, only one note could be
played at a time. Later, when electronics got smaller and more stable, the first polyphonic synthesizers were made, with the
most famous of them being the Sequential Circuits Prophet-5 from 1978. The Prophet-5 featured five voices which were
identical copies of a monophonic subtractive synthesizer. This allowed five notes to be played at once. This and the ability
to save patches to memory was revolutionizing and inspired many other polyphonic synthesizers later.
As synthesizers became more complicated and incorporated more digital circuits, there was a need for communication
between different instruments. Back then, every company used their own way of communicating between devices. In 1981,
different synthesizer companies collaborated to invented the Musical Instrument Digital Interface or short MIDI. MIDI
allowed to send note and track information from one instrument to another. To this day MIDI is still being used and because
it was well thought through and made open source from the beginning, it has never been updated. This makes it possible
to connect a synthesizer from the 80s to a computer from today using MIDI, without having to struggle with versions and
updates.

Picture 2.1 A Minimoog Model D

4

2.2 Subtractive Synthesis
In subtractive synthesis, the main sources of sound are circuits called oscilla-
tors. They produce alternating electrical voltages which would result in sound
if connected to a speaker. The frequency, i.e. also the pitch of the soundwave is
controlled by voltages making this section of the synthesizer the Voltage Con-
trolled Oscillator or VCO for short. The VCOs produce waveforms which are
very rich in overtones, like square- or saw-shaped waveforms, which are very
easy to synthesise using basic electronics.
Because the overtone rich waveforms of the VCO are too harsh for most styles
of music, a filter is used. An audio filter lets overtones through or attenuates
them depending on their frequency. There are many types of filters used in
electronics, however the most popular one used in synthesizers is the low-pass
filter or LPF. A low-pass filter will start to filter away frequencies above a certain
threshold called the cutoff frequency. No analog filter is ideal, therefore fre-
quencies close to the cutoff get attenuated less. How strongly a filter attenuates
the higher frequencies, is called its fequency roll-off. Around synthesizers, the
rolloff is commonly given as dB/Octave. The frequency responce of a low-pass
filter can be seen in Picture 2.6 on the next page. The low-pass filter probably
gained its popularity, because of its similarity to the opening and closing of the
mouth while speaking and therefore sounds very natural. However, there are
also other popular types of filters. There is the High-Pass (HP) which passes
frequencies higher than the cutoff frequency and there is the Band-Pass (BP)
which passes only a narrow band of frequencies around the cutoff and cuts
high and low frequencies. In synthesizers, filters can also be voltage controlled,
making them Voltage Controlled Filters or VCFs. Some VCFs have another
feature called resonance. If a filter is fed back into itself, it starts to resonate.
Similar to mechanical resonance, electrical resonance has the form of a sine
wave centered around the cutoff frequency of the filter, like in Picture 2.6.
Resonance can enhance the sound and also exaggerate the effect of the filter.
At this point our synthesizer has some oscillators and a filter. However, some
important parts are still missing. As said earlier, the VCF can be used to simu-
late the opening and closing of the mouth while speaking. Therefore, we need
something to change the cutoff of the filter over time. This is commonly done
by an Envelope Generator. An envelope does not consist of paper, but rather
of a voltage changing over time. An ADSR evelope can be seen in Picture 2.7.
If a key is pressed on the keyboard, the envelope starts to rise to a maximum
level. The time this process takes is called attack time. After that, the decay time
shows how long it takes the voltage to drop to a sustain level. The envelope
stays on this voltage until the key is released. Then the release time shows how
long the voltage has to again reach the lowest level. There are also other types
of envelopes in synthesizers but the ADSR (Attack, Decay, Sustain, Release)
is the most common one and follows the dynamics of most instruments very
well. By using an ADSR to modulate the cutoff frequency of the filter, we can
give the filter a large amount of expression. Now it is possible to simulate the
short plucking sounds of a guitar but also the slow attacking sounds of strings.
In addition to the filter, it is common in most synthesizers to have an amplifier
which changes the loudness of the sound. The amplifier is also voltage con-
trolled, making it the Voltage Controlled Amplifier or VCA. The VCA is also
modulated with an additional ADSR. This allows the note to only be audible
when a key is pressed, because oscillators just continuously oscillate.
Aside from those necessary features, most synthesizers have additional features
to modulate pitch or cutoff to shape the sound further. The most common
feature is the LFO or low frequency oscillator. This oscillator is very similar to
the VCOs, but the frequency is below the audible range (<20Hz) and its signal
is not used as a sound source. When the voltage of the LFO is used to modula-
te the pitch of the oscillators, the effect is very similar to vibrato on a stringed
instrument. When applied to the filter cutoff, the resulting effect is a tremolo.

Picture 2.2 A sawtooth wave
from an oscillator of my syn-
thesizer.

Picture 2.3 The same sawtooth
wave passing through the filter
in lowpass mode.

Picture 2.4 A square wave with
filter resonance turned up. The
sharp edges of the square wave
produce these oscillations,
which we hear as the resonant
frequency.

5

OSCILLATOR FILTER AMPLIFIER

ENVELOPES

OUTPUTPITCH

MODULATION

A

KEY PRESSED

TIME

VOLTAGE

KEY RELEASED

D S R

OSCILLATOR FILTER AMPLIFIER

ENVELOPES

OUTPUTPITCH

MODULATION

A

KEY PRESSED

TIME

VOLTAGE

KEY RELEASED

D S R

Picture 2.5 The basic signal flow of a substractive synthesizer.

Picture 2.6 A frequency responce diagram (also called bode plot)
of a low-pass filter. Notice the resonance which increases the am-
plitude around the cutoff frequency.

Picture 2.7 A diagram of an ADSR envelope. Here you can
see the attack, decay and release time and the sustain level.

Picture 2.8 This is a photo of the actual envelope from
my synthesizer being displayed on the oscilloscope. The
envelope changes in an exponential manner, because a
capacitor is being charged or discharged.

FREQUENCY

FILTER GAIN
RESONANCE

FREQUENCY ROLL-OFF

CUTOFF FREQUENCY

OSCILLATOR

OSCILLATOR BANK

SYNC

EXT. AUDIO

VCFMIXERKEYS
ARDUINO

NOISE

AMPLIFIER

VCA

ENVELOPE

EG 1EG 2

OUTPUT

PITCH

MODULATION

LFO

6

3 Main Section

3.1 Planning
I was always inspired by the Minimoog and the old Moog Modular Synthesizers. Therefore, I decided to recreate something
similar. Because I did not want to make an exact copy of the Model D, I took inspiration from the design and construction
more so than from the electronics. The Minimoog was constructed out of wood and had its main panel mounted on a
smaller metal cabinet, which could be rotated upwards. The main front panel was black, and all labels and dials are written
on in white.
For the electronics, I wanted to add a lot of features to allow more possibilities. One problem in old synthesizers was tuning
instability. Some components like transistors and capacitors strongly drift in value when the temperature changes. This could
change the pitch of the oscillators slightly, causing instability. To completely avoid this problem, I planned to use CEM3340
chips (the same used in the Prophet synthesizers), which should be largely temperature compensated and therefore more
stable. Next up was the choice of filter. The first thought would be to use the classic Moog Ladder Filter, which was used in
the Model D. However, the Ladder Filter loses a lot of the original signal when turning the resonance up. Another alternative
was the filter from the Steiner-Parker Synthacon, which was built in 1975. I settled on choosing the Synthacon filter for my
synthesizer. I planned my synthesizer to feature ADSRs to allow more versatility and ease of use. One to control the VCA
and one for the filter or additional features like oscillator pitch. I also planned that the LFO should be able to control the
pitch of the oscillators and the filter cutoff.
To build a synthesizer like the Model D, I obviously needed a keyboard. I found an old MIDI Keyboard second-hand for a
low price. From this point, I started modelling my synthesizer in the 3D design software Blender. There was no real reason to
use Blender for this step, I am just very comfortable using it and it allows me to preview the final product with the right mate-
rials. My synthesizer is mostly built out of wood. The main panel, the back panel and the one with the pitch and modulation
wheel are cut out of aluminium. Aluminium is perfect for building synthesizer panels. It is easy to drill and paint afterwards.

FREQUENCY

FILTER GAIN
RESONANCE

FREQUENCY ROLL-OFF

CUTOFF FREQUENCY

OSCILLATOR

OSCILLATOR BANK

SYNC

EXT. AUDIO

VCFMIXERKEYS
ARDUINO

NOISE

AMPLIFIER

VCA

ENVELOPE

EG 1EG 2

OUTPUT

PITCH

MODULATION

LFO

Picture 3.1 This is the signal flow which I planned for my synthesizer.

7

3.2 Keyboard & Digital Section
To simplify a lot of the keyboard control and to allow MIDI messages to be received and sent, I chose a microcontroller to
handle most of the digital logic. A microcontroller is like a very small computer which can be programmed to do tasks. For
my project I chose the Arduino Nano. The Nano carries the same specs as the popular Arduino Uno, but is smaller and more
practical for being placed onto circuit boards.

3.2.1 Keyboard
As said earlier, I scavenged my keyboard out of an old MIDI keyboard, with 49 velocity-sensitive keys. Velocity on keyboards
is a way of telling how fast a key is pressed. Digital keyboards measure the time of the keys initial press and the time of the
key fully being pressed down. This very short time difference can be used to calculate the velocity of the keypress.
After removing the old circuit board from the keyboard, I was left with two connectors. One with 9 pins and one with 12.
After some researching and testing, I found out that the two connectors act as rows and columns for a button matrix. The
matrix of my keyboard can be seen in the Appendix on page 22. The button matrix consists of a grid of buttons. Columns
and rows of buttons are connected. Each button, when pressed, connects a single line from the 12-pin connector to the
9-pin connector. The rows and columns are individually multiplexed using a microcontroller. This means the microcontroller
quickly checks all combination of lines. If there is a connection, the position of the button can be calculated. Notice how
there is a small diode after every button. This avoids shorts when more than one button is pressed at once.
This button matrix consists of 98 buttons, which makes up two buttons per key. As explained earlier, two buttons are used
per key to detect velocity. The last column only consists of two buttons, which makes the code a little more complicated. If
the manufacturer had chosen a matrix which was 7 by 14, it would have made the code a little cleaner.
However, why could you not connect each key to a separate pin on the Arduino? The answer is saving space. There are not a
lot of pins on a microcontroller and space must be used efficiently. With this setup we use only 21 IO-Pins on the Arduino.
Otherwise we would have used 98. Still, the Arduino does not have 21 IO-Pins. Therefore, we use multiplexing and registers.
For my synth, I used two 74HC595 shift-registers. Those registers can be hooked up to the Arduino using only 3 Pins. The
Arduino sends the data on a serial line to the registers. Each register can output 8 bits. I needed two of them to connect to
the 12 input lines on the matrix.
For the output of the matrix I used a 4051 8-bit multiplexer. This chip can be used to select one address out of all outputs
using binary. In this case, I used 3 bits to select one of the 8 output addresses. Because there are actually 9 outputs, I just
connected the last one directly to an IO-Pin on the Arduino. Before going into the multiplexer, the pins need to be pulled
down using a 10kΩ resistor on each line, so that they show ground potential when they are not connected. Otherwise the
pins would be floating and showing wrong outputs. Altogether, I used 8 Pins of the Arduino for the keyboard circuitry.

A4A411
S1S1 1010
S0S0 1111

A3A31212

A0A01313

A1A11414

A2A21515

VC
C

VC
C

1616

A6A622

AA 33

A7A744

A5A555

~E~E 66

VE
E

VE
E

77

G
N

D
G

N
D

88

S2S2 99

74
H

C
40

51
74

H
C

40
51

+5V+5V

10k10k

11
22
33
44
55
66
77
88
99

+5V+5V

+5V+5V

R13R13
220R220R

QBQB 11

~SRCLR~SRCLR1010
SRCLKSRCLK1111

RCLKRCLK1212

~OE~OE1313

SERSER1414 QAQA 1515

VC
C

VC
C

1616

QCQC 22

QDQD 33

QEQE 44

QFQF 55

QGQG 66

QHQH 77

G
N

D
G

N
D

88

QH'QH' 99

74
H

C
59

5
74

H
C

59
5

+5V+5V+12V+12V

C3C3
100nF100nF

C1C1
47uF47uF

C2C2
100nF100nF

11

1010
1111
1212

22
33
44
55
66
77
88
99

ININ11

G
N

D
G

N
D

22

OUTOUT 33

U5U5
L7805L7805

QBQB 11

~SRCLR~SRCLR1010
SRCLKSRCLK1111

RCLKRCLK1212

~OE~OE1313

SERSER1414 QAQA 1515

VC
C

VC
C

1616

QCQC 22

QDQD 33

QEQE 44

QFQF 55

QGQG 66

QHQH 77

G
N

D
G

N
D

88

QH'QH' 99

74
H

C
59

5
74

H
C

59
5

11

22

33
44 55

+5V+5VR12R12
220R220R

11

22 44
55
66

U4U4
4N354N35

D91D91
1N41481N4148 11 22

BYPASSBYPASS

R11R11
220R220R

R10R10
2k2k

+5V+5V

11

22

33
44 55

ROW_12ROW_12

C
O

LU
M

N
_7

C
O

LU
M

N
_7

D5_ARDUINOD5_ARDUINO

D6_ARDUINOD6_ARDUINO

D9_ARDUINOD9_ARDUINO

TX_ARDUINOTX_ARDUINO

D10_ARDUINOD10_ARDUINO

D8_ARDUINOD8_ARDUINO
D7_ARDUINOD7_ARDUINO

ROW_10ROW_10

C
O

LU
M

N
_8

C
O

LU
M

N
_8

C
O

LU
M

N
_6

C
O

LU
M

N
_6

C
O

LU
M

N
_5

C
O

LU
M

N
_5

C
O

LU
M

N
_4

C
O

LU
M

N
_4

C
O

LU
M

N
_3

C
O

LU
M

N
_3

C
O

LU
M

N
_2

C
O

LU
M

N
_2

C
O

LU
M

N
_1

C
O

LU
M

N
_1

C
O

LU
M

N
_9

C
O

LU
M

N
_9

D11_ARDUINOD11_ARDUINO

ROW_01ROW_01

RX_ARDUINORX_ARDUINO

ROW_02ROW_02

D13_ARDUINOD13_ARDUINO

ROW_03ROW_03

ROW_04ROW_04

ROW_05ROW_05

ROW_06ROW_06

ROW_07ROW_07

ROW_08ROW_08

ROW_09ROW_09

ROW_11ROW_11

TO_KEYBOARDTO_KEYBOARD FROM_KEYBOARDFROM_KEYBOARD

From solder sideFrom solder side

MIDI INMIDI IN

MIDI OUTMIDI OUT

From solder sideFrom solder side

Picture 3.2 All of the digital electronics

8

3.2.2 MIDI
Because I wanted to add full compatibility to my synthesizer, I needed MIDI connections. Building a MIDI input for an
Arduino is straight-forward and a library can be used to simplify the coding process. MIDI works on a slave-master principle.
This means, if a MIDI-cable is plugged from the MIDI-out of one instrument to the MIDI-in of another, the first instru-
ment has full control over the other.
Therefore, I needed to use two different circuits for input and output. A MIDI output is simple to build and uses only two
resistors. However, on the MIDI input circuit, I needed a few additional components. To prevent ground-loops between
instruments, I needed to electrically isolate the signal in the circuit. This is done by the 4n35 optocoupler. An optocoupler
uses a combination of an LED and a phototransistor on its inside, to transmit a signal using light. This isolates the two
keyboards from each other.
The input and output circuits use the two serial pins RX and TX on the Arduino. Because these pins are connected to the
USB interface and are used by the programmer, the Arduino cannot be programmed while the MIDI input circuit is con-
nected. Therefore, I added a small switch on my circuit board to disconnect the MIDI-input while the Arduino is being
programmed.

3.2.3 DAC
My synthesizer is mostly analog, but the keyboard and the Arduino are storing notes digitally. This meant I needed a way of
converting digital numbers to analog voltages. Therefore, I used a digital to analog converter or DAC, which does exactly
that. There is a big range of different DACs for different tasks. For my purpose I used an MCP-4728 breakout board. This
board has 4 channels which could simultaneously send out voltages to my synth. I only needed two separate signals for pitch
and velocity, but I still went for the 4-channel option. The Arduino communicates to the board using I2C. I2C is another
protocol used by microcontrollers to communicate with each other. To connect my DAC, I needed to connect pins A4 and
A5 on the Arduino to the breakout board.

3.2.4 Code
Programming the Arduino to do all the abovementioned tasks was a challenge. In total, my Arduino sketch stretched over
500 lines long and featured multiple classes. The entirety of my code can be found in the appendix. First, I started to interact
with the MIDI keyboard I salvaged. The first lines I wrote were checking notes I pressed on the keyboard. This was to make
sure the keyboard and digital logic all worked. This was done using two nested for-loops to step through the matrix and read
the state of each button.
After a lot of debugging and troubleshooting, I had the Arduino display values on the screen. I feared that my digital elec-
tronics would not be reliable enough and miss pressed notes, but the way I wrote the code made the measuring very reliable
and it worked surprisingly well. I put the whole loop into a function to be used later.
Now it was time to start working on a main loop in the program to step though all different tasks the Arduino has to man-
age. After some planning, I decided to switch between three modes in the code. MIDI-input, normal play and arpeggiator.
During MIDI-input mode the keyboard should not respond to any keypresses. Only incoming MIDI messages should trig-
ger notes. I decided this would be optimal, because it simplified the code and reduces possible bugs. During normal play, the
keyboard responds to pressed keys. It also acts like a MIDI keyboard, which sends note-on and note-off messages. Pitch
bend and modulation wheels are also scanned and sent out using MIDI.
The third mode is arpeggiator mode and was the hardest to implement. In an attempt to tidy up my program, I put all ar-
peggiator related things into a class. In a nutshell, the arpeggiator class receives the notes currently pressed. The program
then steps through the sequence at a fixed time period and outputs the notes. The hold function of the arpeggiator was also
difficult to implement, but I still decided to do it like it was done in synthesizers like the Roland Juno, where a chord can
be shortly pressed to set the arpeggiator instead of having to hold the notes down continuously. When activated, the hold
function keeps track of the amount of notes pressed at any time. Every time the arpeggiator senses more notes than earlier,
it saves them in memory. If all notes are released, the arpeggiator will start playing the maximum amount of notes it saved.
Working out the arpeggiator logic took the most revisions and troubleshooting.

3.3 Wooden Frame
I started out the construction of my synthesizer with making the wooden frame first. Therefore, I designed the pieces, like
I wanted them to look, in the software Blender3d, where I could preview the overall construction. Then I bought a 1m2
piece of 1.2mm thick plywood and marked the shapes I wanted to cut. I decided it would be best to cut the pieces on a big
circular saw, because the small jig saw I had at home would give bad results. With the help of my father, who is a teacher at
the local school, I could use the big circular saw there to cut my wood to shape. Then, I started to screw the pieces together
using wood screws. I decided not to glue the parts, so I could take the construction apart later. With some small wooden
blocks, I screwed the keyboard in place. The piece which housed the main electronics should be able to rotate up and down.

9

Therefore, I mounted it to the rest of the frame using long piano hinges. To prevent over-rotating, I connected the rotating
piece to the main frame with a small cloth on both sides.
To be able to rotate the housing for the electronics is not only convenient for use of the synthesizer, but it was very helpful
when designing the electronics. When working on the insides I could just rotate the back part upwards, then when testing I
could rotate it back down, without any problems.
In the end, after I installed all the electronics, I took the synthesizer apart again for a paint job. The basic plywood I was using
was very bright and did not look great on the synthesizer. Therefore, I bought mahogany coloured wood stain and clearcoat.
After sanding down the wood, I applied the stain, which could be done in one coat. After drying I added layers of clearcoat
and sanded down each one to get a smooth surface.

3.4 Aluminium Panels
3.4.1 Cutting and drilling
My synthesizer uses three aluminium panels. There is the main panel with, all the switches and dials, then there is another
one, which houses the pitch bend and modulation wheels, and the last one is on the back, where the inputs and outputs are
connected. For every panel, I used around 1.5mm thick aluminium sheet. For the main panel I needed to find a big piece,
because the panel is 75cm long. I cut the three pieces to size using my jig saw. After punching points to mark the position of
the holes, I used the drill press again at my local school to cut the holes. The places where I had to cut out shapes, like the
holes for pitch and modulation wheels, I started by drilling a hole in the centre and then cut out the rest using my jig saw.
The three panels are mounted to the wooden body using screws.

3.4.2 Modulation & Pitch Wheels
The MIDI-keyboard I used also featured pitch and modulation wheels. Those wheels were made of ugly gray plastic, there-
fore I decided to create my own. Fortunately, the metal bracket and the potentiometer from the old wheels could be reused
for my own ones.
I decided to 3d-Print the new wheels. Therefore, I first designed wheels with the proper dimensions in Blender3d. My class-
mate Nico Lenz ownes a 3d-Printer, so he kindly printed out the two wheels out of black ABS plastic.

Picture 3.3 The fully assembled synthesizer. The main panel and the modulation and pitch wheel panel are both visible.
More pictures of the complete synthesizer can be found in the appendix.

10

3.4.3 Screen Printing
To achieve a vintage-look on my panel, I wanted to somehow print all
lines and labels using white on black. The problem is I am not able to just
run the aluminium through a printer, obviously. There are different met-
hods of printing onto aluminium, but the one I chose was screen printing.
I have done screen printing in the past, so I had some experience doing it.
Also, my local secondary school had a lot of screen-printing equipment
ready.
I asked my old art teacher Sasha Christener if I could screen print at the
school. He agreed and helped me through the process of printing the
panels.
In screen printing, the design is firstly printed on a transparent sheet. The
parts which where printed black should block UV light from passing and
therefore act as a mask.
All my designs where made in Adobe Illustrator, where I could design all
the icons, text and lines.
The next step is to find an appropriate screen to print with. The screen
has a small grid, which lets paint through, but the grid also holds the emul-
sion which blocks some areas from passing the paint. Important is the
size of the screen, which must be wide enough for the panel it is used for.
There are also different grid sizes for screens. Finer grids are often used
for high resolution images, which was not necessary in my case, because I
printed only black on white text.
In a dark room, the screen is then coated in a photo-emulsion. This liquid
hardens when exposed to ultraviolet light. After this emulsion has dried,
the transparent sheet with the design is placed on top of the screen and
exposed to light. The light should contain UV-light, so it is best to use
something like a metal-halide bulb. The sun can also be used to expose
the emulsion, but timing can get difficult, because the strength varies de-
pending on weather and time.
The exposure time is very important for the quality of the screen. When
washing the unexposed emulsion off later, it should come off easily and
the exposed emulsion should stay in its place. Exposing too briefly makes
the exposed parts come off and exposing for too long lets the UV seep
under the transparency or reflect from the screen and expose the parts,
which should stay unexposed. Finding the right exposure time can not
really be calculated and must be done experimentally. A black paper can
be used to sequentially block parts of the screen during an exposure to
determine the best exposure time. In my case, I overexposed far too much
on my first tries. After some more attempts, I settled on 45s exposure
time, which is rather short for screen printing.
After the unexposed parts are washed off, the screen can be dried. The
screen now acts as a mask for printing.
Before printing on my panel, I sanded it down well and sprayed it black
using spray paint. Then I printed all my panels using white screen-prin-
ting paint. The screen is filled with paint and placed over the substrate.
Then the paint is pressed through the screen onto the aluminium using
a squeegee. After drying, I finished the surface off using glossy clearcoat
out of a spray can.

Picture 3.5 The finished screen
is ready for printing the labels

for the wheels-panel.

Picture 3.4 The screen being ex-
posed under UV-light.

11

3.5 Analog Electronics
When electronics get mass produced in factories, printed circuit boards are specifically made for every circuit. This would not
be necessary for my circuits because I am only building one of each. Also, prototyping would become more difficult because
a lot of changes must be made all the time. Therefore, I am using stripboard for all my circuits. Stripboard has holes spaced
in a grid, where components can be placed. On the backside are strips of copper, which span horizontally over a board. If a
connection must be removed, a drill bit can be used to scrape away the copper. I built all the analog circuitry on stripboard
and used jumper cables if the connections on the back side were not enough. It is always good practice to be able to remove
the boards from the synthesizer. Therefore, I did not just solder all cables directly to the board, I instead used connectors for
every connection. I crimped female Dupont headers onto the cable and soldered male headers to the circuit boards.
I mounted the boards onto the backside of the aluminium panel using small Nylon standoffs, which could be easily removed,
if a change had to be made.

3.5.1 Power Supply
Every electronic project needs a power supply. In synthesizers, power supplies often have a positive and a negative rail, e.g.
+12 volts and -12 volts. Those dual rails are mostly used because of operational amplifiers. They amplify signals which are
centred around 0v, this means they alternate between negative and positive voltages. The op-amp therefore needs the nega-
tive rail to be able to amplify a negative voltage.
For my power supply, I roughly followed a design I found online from syntherjack.net. This design uses a transformer to
reduce the 230 Volts AC to 12VAC. Then the AC is converted to DC and stored using capacitors. The rough DC is smoothed
out using voltage regulators. Most other power supplies use 7812 and 7912 IC as positive and negative 12 Volt regulators. In
Syntherjacks design, they use LM317 and LM337 ICs, on which the voltage can be exactly adjusted using a trimmer.
When planning my synthesizer, I wanted to avoid working with high and potentially lethal voltages. Therefore, I used an ex-
ternal 12 Volt AC wall adapted, which I found on eBay. This made me reduce the full bridge rectifier to a half wave rectifier,
because I only had a single AC input and not the dual secondary coil from a transformer. The rest stayed mostly similar to
Syntherjacks design. Because I did not have fitting heatsinks for the two regulators, I cut off a big piece of aluminium from
an old heatsink and mounted it to the frame. I build my circuit on stripboard and added female headers for the outputs. The
AC input is a small jack on the back panel, which is connected in series with an on-off switch.

D3D3
RED_LEDRED_LED

AD
J

AD
J

11

VOVO 22VIVI33

U1U1
LM317LM317

AD
J

AD
J

11

VIVI22 VOVO 33

U2U2
LM337LM337

R
1

R
1 33

0R
33

0R

11

22

33

RV1RV1
2k2k

11

22

33

RV2RV2
2k2k

C2C2
100n100n

C5C5
100n100n

C3C3
10u10u

C6C6
10u10u

C1C1
1000u1000u

D4D4
BLUE_LEDBLUE_LED

R3R3
4k74k7

R4R4
4k74k7

D1D1
1N40011N4001

D6D6
1N40011N4001

R2R2
1k1k

R
6

R
6 33

0R
33

0R

R5R5
1k1k

D2D2
1N40011N4001

C4C4
1000u1000u

D5D5
1N40011N4001

11 22

ON/OFFON/OFF

11

22

POWER INPOWER IN

+12V+12V

-12V-12V

GROUNDGROUND

Picture 3.6 The schematic of my power supply. The two regulators are mounted on a big heatsink for protection. The vol-
tages can be accurately set using the two trimpots. The two LEDs are built onto the pcb and are only used for prototyping.
In case of a short the LEDs will go out, which makes it easy to spot.

12

3.5.2 Oscillator Bank
Oscillators are the main source of sound in a synthesizer. The main input for an oscillator is pitch, the output is always a
waveform. In a synthesizer, oscillators are voltage controlled, making them Voltage Controlled Oscillators or VCOs. Signals
and values are always represented in voltages. Pitch as voltage is often given using Volts/Octave. 1 Volt difference in input
makes up one musical octave, which also represents multiplying the frequency by 2. The advantage of Volts/Octave is its
exponential behaviour. Our ears perceive frequencies in a exponential manner. Measured in Hertz, differences in higher
frequencies are less noticeable than in lower frequencies. Some Korg and Yamaha synthesizers used another representation
of pitch called Hertz/Volt, which was less popular due to its linearity.
On an electrical level, a VCO is a basic relaxation oscillator: A capacitor is charged up by a current. If the voltage reaches
a certain level, the capacitor is discharged and the process restarts. This results in a sawtooth waveform, which will later be
shaped into other waveforms. The rate of this oscillation is controlled by the current charging the capacitor. Because this
rate is proportional to the current and the notes should follow an exponential manner, the linear input voltage needs to be
converted. This is usually done using an exponential converter circuit. The converter takes in the volt/octave inputs and
outputs a current, which charges the main capacitor.
The different output waveforms are made using some op-amps configurations. For example, a square-wave can be created
by comparing the sawtooth to a constant reference voltage. If the saw wave is higher in voltage than the constant one, the
output of the comparator is high, otherwise it is low. This results in a square wave whose duty cycle can be set by changing
the reference voltage. A triangle wave can also be easily made from a sawtooth. By taking an inversion from the original
sawtooth wave and combining it with the original in the right way will result in a triangle wave.
These types of analog oscillators are often the biggest cause of problems in synthesizers. Mainly because the human ear is
very well trained in hearing musical pitch. Even a small difference in pitch can be heard. The problem with analog circuitry
is component values drifting, which happens if the temperature changes. Therefore, most oscillators feature some sort of
temperature compensation, which can be difficult to achieve, but it can almost completely remove pitch drift.
To avoid all the above-mentioned problems, I decided to work with the complete VCO inside a chip, the Curtis CEM3340.
Curtis chips were first introduced in the production of the Prophet synthesizers. The advantage of the CEM3340 is the very
easy to achieve temperature stability. Additionally, the chip takes up far less space than any other analog oscillator.
The CEM3340 features a Volt/Octave summer, two oscillator-sync inputs and a linear FM input. The three output wave-
forms are triangle, sawtooth and pulse with an additional pulse-width input. The CEM3340s datasheet shows the basic
arrangement with all the features. For my three oscillators, I removed the linear FM input and the sync inputs. I instead used
the special sync circuit, which is shown in the datasheet to achieve a more classic hard-sync sound. The sync only goes from
oscillator 1 to oscillator 2. The volt/octave summing note acts like the virtual ground on an op-amp. It allows to connect all
volt/octave inputs using 100kΩ resistors.
For the output waveforms, I used different resistors as voltage dividers. This allowed me to adjust the level of each wave-
form, so that all sounded equally loud. I did this through testing on a breadboard.
All pitch modulation and pulse width inputs can be adjusted or turned off on the front panel. The sync can also be turned
on or off using a switch.
Each oscillator has a rotary switch labelled as range. This switch is used to offset each oscillator by one or more octaves. A
simple resistor ladder and a trimmer gives voltage references from 0v to 5v, which can be selected with the switch. There is
also an additional tuning pot. It can be used to slightly offset the oscillator to adjust tune or also offset a single oscillator by a
few semitones. Each oscillator also has a rotary switch to select the waveform. For the first and the second oscillator, I used
the three waveforms and an additional waveform consisting out of a mix of sawtooth and triangle. This waveform was also
used in the original Minimoog. On the third oscillator, I did not use this triangle-saw mix, however, I used an op-amp and
two diodes to convert the triangle to a sinusoidal waveform.
Another popular feature in synthesizers is glide (also called portamento). Instead of hopping directly to the new pitch if
a key is pressed, glide makes the pitch slowly transition to the new note. This glide circuit can be easily built using a dual
op-amp and a small RC low-pass filter. A capacitor is charged to the pitch voltage through a potentiometer. The variable
resistance will change the charging speed of the capacitor.
Mixing together the pulse-width voltage with the pulse-width-modulation is approached differently in my synthesizer than
in others. Usually the two signals are summed together. The pulse-width potentiometer in my synthesizer is a 4 pin potentio-
meter. This means there is a center tap on the resistive track. On this center tap the pulse-width-modulation signal is added.
I decided this would be handy, because it would stop the oscillator from going silent like it usually does when pw and pwm
signals mixed get too large and the duty cycle goes to either 0% or 100%.
On the panel for the oscillator bank, there is one small error. The switch for the contour target has options 1 or 1&2. This
is wrong, because the correct label would be 2 or 1&2. I made this mistake because at the time I was unsure how oscillator
synchronisation works. If oscillator 1 synchronizes oscillator 2, the pitch of oscillator 1 should be constant, while the pitch
of oscillator 2 changes to get the nice hard-sync effect. But now I cannot change it, because the panel is already printed.

13

R15R15
1M1M

C7C7
1u1u

SCALE1SCALE111

TRITRI 1010

CAPCAP 1111

GNDGND 1212

FMFM 1313

SCALESCALE 1414

CV_INCV_IN 1515

VCCVCC 1616

SCALE2SCALE222

VEEVEE33

PULSEPULSE44

PWMPWM55

HSYNCHSYNC66

HIGH_FHIGH_F77

SAWSAW88 SSYNCSSYNC 99

U3U3
CEM3340CEM3340

+12V+12V

R20R20
100k100k

R22R22
1k81k8

R23R23
1M51M5

R26R26
470R470R

R25R25
51k51k

R21R21
5k65k6

R19R19
24k24k

11

22

33

SINE_SHAPESINE_SHAPE
100k100k

R17R17
470R470R

11

22

33

O
FF

SE
T

O
FF

SE
T

10
0k

10
0k

C3C3
10n10n

C
2

C
2 1n1n

C1C1
10n10n

R29R29
10k10k

R36R36
5k65k6

C5C5
100n100n R

27
R

2747
k

47
k

-12V-12V

11

22

33

Q1Q1
2N39062N3906

11
22

33

SY
N

C
SY

N
C

C6C6
200p200p

++55

--66
77

U1BU1B
TL072TL072

R31R31
51k51k

R
32

R
32 10
k

10
k

1N41481N4148R
30

R
30 20
k

20
k

R28R28
20k20k

-12V-12V

11

22

33

PITCH_RANGEPITCH_RANGE
100k100k

11

22

33

PITCH_WHEELPITCH_WHEEL
10k10k

R
10

R
10

59
0k

59
0k

-12V-12V

R8R8
100k100k

11

22

33

MAX_PULSE_WIDTHMAX_PULSE_WIDTH
100k100k11

22

33

44

PULSE_WIDTHPULSE_WIDTH
50k50k

R9R9
1k1k

R7R7
1k1k11

22

33

PWMPWM
10k10k

R11R11
5k15k1

R4R4
5k15k1

11
--22

++33

U1AU1A
TL072TL072

+12V+12V

11

22

33

G
LI

D
E

G
LI

D
E

A1
M

A1
M

11

22

33

CONTOUR_AMOUNTCONTOUR_AMOUNT
10k10k

1122

CONTOUR TARGETCONTOUR TARGET

+12V+12V

R16R16
220k220k

R18R18
220k220k

R14R14
220k220k

+12V+12V

R13R13
1M1M

R12R12
100k100k

11

22

33

SCALESCALE
10k10k

R
24

R
24

56
0R

56
0R

-12V-12V

++55

--66
77

U2BU2B
TL072TL072

11

22

33

HIGH_FREQHIGH_FREQ
20k20k

R38R38
10k10k

-12V-12V

11

22

33

RV1RV1
200k200k

R34R34
510R510R

R33R33
510R510R

+5V+5V +5V+5V

11

22

33

OCTAVE_STEP_TRIMOCTAVE_STEP_TRIM
500R MULTITURN500R MULTITURN

11
22
33
44
55
66

77

RANGERANGE

+12V+12V

+12V+12V

C4C4
4u74u7

R35R35
100R100R

11

22

33

FINE_TUNEFINE_TUNE
10k10k

11

--22

++33

U2AU2A
TL072TL072

PULSE_WIDTHPULSE_WIDTH

SAWTOOTH_OSC_1SAWTOOTH_OSC_1

MAIN_PITCHMAIN_PITCH

SINESINE

SSYNC_9SSYNC_9

TRIANGLE_10TRIANGLE_10

PITCH_BENDPITCH_BEND

DAC_OUTDAC_OUT

LFOLFO

2.5V2.5V

MAIN_PITCHMAIN_PITCH

RANGERANGE

OSC1_ENVELOPEOSC1_ENVELOPE

OSC2_ENVELOPEOSC2_ENVELOPE

TRIANGLETRIANGLE

TRIANGLETRIANGLE

SAWSAW

2.5V2.5V

PULSEPULSE

FINE_TUNEFINE_TUNE

VIBRATOVIBRATO

ENVELOPEENVELOPE

PULSE_WIDTHPULSE_WIDTH

ENVELOPE_2ENVELOPE_2

RANGERANGE

PITCH_BENDPITCH_BEND

FINE_TUNEFINE_TUNE

PULSE WIDTH MIXERPULSE WIDTH MIXER

(OSC 1 & 2 ONLY)(OSC 1 & 2 ONLY)

PANEL PCBPANEL PCB

SINE CONVERTER (VCO 3 ONLY)SINE CONVERTER (VCO 3 ONLY)

FINE TUNE AND RANGEFINE TUNE AND RANGE
(ON PANEL, 3x)(ON PANEL, 3x)

SYNCSYNC
(VCO 1 TO VCO 2)(VCO 1 TO VCO 2)

CEM3340 OF OSC 2CEM3340 OF OSC 2

(MULTITURN)(MULTITURN)

6x 1k RESISTOR6x 1k RESISTOR

PITCH WHEEL RANGE (UNDERNEATH WHEEL-PANEL)PITCH WHEEL RANGE (UNDERNEATH WHEEL-PANEL)

MAIN OSCILLATOR (3x)MAIN OSCILLATOR (3x)

GLIDEGLIDE

ENVELOPEENVELOPE

Picture 3.7 These are all
schematics, which are rela-
ted to the oscillator bank.
Some features are panel-
mounted (directly solde-
red to the potentiometers).
For the range switch, I sol-
dered all resistors direct-
ly onto the rotary switch.
The trimpot was soldered
to a small piece of stripbo-
ard and stuck onto the ro-
tary switch with two leads.
This circuit board was the
largest hassle to build, be-
cause it featured so many
circuits. This pcb houses
13 different connectors,
which made up a total of
36 cables entering the pcb.

14

3.5.6 Mixer & Noise
Before going into the filter, the three oscillator outputs, noise and external audio must go through the mixer. This allows
adjusting the volume of each oscillator and lets you turn of an oscillator completely. The change in level can also be useful
to add some distortion to the signal, if the sum of the three oscillator waveforms overload the circuitry of the filter.
The three rotary switches switch between the four available waveforms. Waveforms with a high amplitude coming out of the
CEM3340 have their signal attenuated using resistors, so that every waveform has the same perceived loudness. The resistor
forms a voltage divider using the 100kΩ resistance of the potentiometer. Additionally, oscillator one and two have a mix
between sawtooth and triangle waves. This was inspired by the Minimoog Model D, which also features this waveform. The
mixing part consists of five logarithmic potentiometers, which attenuate the input signals. DC offset gets removed using
capacitors and all inputs are summed up using a inverting op-amp configuration.
Noise is an additional source of sound next to the main oscillators. The noise circuit produces white noise, which has an
equal amount and level of all audible frequencies. The noise signal then passes through the mixer as a fourth channel to ad-
just its level. There is an additional fifth input on the pack panel, which can be used to route an external signal into the mixer.
When I first built the mixer and noise circuit, the noise leaked a lot of interference into other parts of the circuit. This was
partly because the noise circuit, which I built after René Schmitz’s design, produced far too loud a signal. I also did not use
a summing op-amp after the mixer and the signal directly went into the filter. When I finally noticed that this circuit board
contained all the noise problems, I completely scrapped it and started from scratch. This time I used and op-amp to sum the
signals and adjusted some resistors to reduce the output level of the noise circuit.

R6R6
220k220k

R7R7
150k150k

R9R9
68k68k

R11R11
25k25k

R19R19
100k100k

++55

--66
77

U1BU1B
TL072TL072

11

22

33

Q1Q1
BC547BC547

R
18

R
18

10
0k

10
0k

R8R8
10k10k

11

22

33

VCO1_LEVELVCO1_LEVEL
A100kA100k

R16R16
4k74k7

C6C6
100u100u

+12V+12V

+12V+12V

-12V-12V

C7C7
10n10n

R
20

R
20

10
0k

10
0k

C3C3
10u10u

11

22

33

EXT_AUDIO_LEVELEXT_AUDIO_LEVEL
A100kA100k

C5C5
10u10u

R17R17
100k100k

R15R15
100k100k

R10R10
100k100k

R4R4
100k100k

11

22

33

NOISE_LEVELNOISE_LEVEL
A100kA100k

C4C4
10u10u

11

1313
22
33
44

VCO2_WAVEFORMVCO2_WAVEFORM

C1C1
10u10u

C8C8
10u10u

11
22

33
VCO3_LEVELVCO3_LEVEL

A100kA100k

R21R21
100k100k

11

22

33

VCO2_LEVELVCO2_LEVEL
A100kA100k

R22R22
470k470k

11

1313
22
33
44

VCO1_WAVEFORMVCO1_WAVEFORM

11

1313
22
33
44

VCO3_WAVEFORMVCO3_WAVEFORM

C2C2
100n100n

R14R14
10k10k

R13R13
150k150k

R12R12
220k220k

R5R5
25k25k

R3R3
68k68k

R2R2
150k150k

R1R1
220k220k

R23R23
1k81k8

C9C9
220n220n

11

--22

++33

U1AU1A
TL072TL072

EXT_AUDIOEXT_AUDIO

SINESINE

SAWTOOTHSAWTOOTH

TRIANGLETRIANGLE

SQUARESQUARE

SAWTOOTHSAWTOOTH

TRIANGLETRIANGLE

SQUARESQUARE

SAWTOOTHSAWTOOTH

TO_FILTERTO_FILTER

TRIANGLETRIANGLE

SQUARESQUARE

NEAR U1NEAR U1

RENE SCHMITZ NOISE SOURCERENE SCHMITZ NOISE SOURCE

FROM VCO 1FROM VCO 1

FROM VCO 2FROM VCO 2

FROM VCO 3FROM VCO 3

TRANSISTOR SELECTED BY EARTRANSISTOR SELECTED BY EAR

Picture 3.8 The schematic of the wa-
veform selection, mixer and noise
circuit.
All of the resistor arrangements to
mix the waveforms are on the oscil-
lator-pcb, the rest is either panel
mounted or on the mixer and noise
pcb.

15

3.5.3 Filter
No part inside the synthesizer influences the sound as much as the filter. This makes choosing the right filter an important
step. Because I am building a Minimoog inspired synthesizer, the obvious choice would be the classic Moog Ladder filter,
which gave the Minimoog its recognizable sound. However, as I already explained, I settled on the Steiner-Parker Synthacon
filter. This filter is state variable, which means the filter can be switched between lowpass, bandpass, highpass and allpass
mode. Allpass, instead of just adding resonance, also distorts the phase of different frequencies and therefore alters the wa-
veform. The Synthacon filter is a type of diode ladder filter. Diode ladders are somewhat inspired from the original transistor
ladder filter from the Minimoog but produce a harsher tone. This filter is very experimental, but it gained a lot of popularity
lately, because it was featured in the Arturia Minibrute. A schematic of the filter can be found on the website yusynth.net
which belongs to Yves Usson, one of the creators of the Minibrute. I have used the schematics from yusynth.com for a lot
of my projects. They are explained well and work nicely.
The Synthacon filter can get very unstable when turning the resonance up all the way. The feedback makes the filter freak
out completely, which can produce screaming and scratching sounds. I had to tweak some resistors and add a trimmer to
adjust the resonance level, so that the screaming only happens, if the resonance is turned up all the way. This still lets you
experiment with the weird behaviours without them being annoying.
I will not be adding a schematic, because my circuit is mostly identical the one on Usson‘s website.

3.5.4 Modulation
Modulation is used in a synth to change parameters over time. Usually this is done with a low frequency oscillator, or LFO.
For the LFO, I originally planned to again use one of Yusynth’s schematics. However, I decided to experiment and build my
own. So, I started to connect some resistors and capacitors and sketch out my circuit.
The schematic can be seen on the next page in Picture 3.9. The oscillation is made by two op-amps and a transconductance
op-amp, the LM13700. U1B is configured in an integrating configuration. It integrates the constant current of the LM13700,
which results in a rising slope. U1A acts as Schmitt-trigger and produces a square wave, which feeds into O1A. If U1A
changes direction, the current from O1A also changes and the slope of U1B reverses. This results in a triangle wave on the
output of U1B. The triangle wave is then fed into U4B, which converts it into a sinusoid. This triangle to sine conversion
is copied from Yusynth’s LFO design. The advantage of this oscillator is that the output current of O1A can be electrically
controlled. This results in a change of frequency of the oscillator. For both O1A and O1B, IABC is provided by the two volta-
ge to current converters with U3A and U3B. The rate is controllable from the front panel, from the modulation wheels and
from the AD-envelope which is built into the LFO. An Attack-Decay envelope rises if a key is triggered on the keyboard.
Differently to an AR-envelope, an AD-envelope starts to fall immediately if the attack level is reached, instead of waiting for
a key to be released. It consists out of a simple 555-timer configuration which charges a capacitor. The transistor in front of
the 555-timer converts the gate signal to a short trigger. The state of the envelope is displayed by an LED on the front panel.
The other half of the dual transconductance op-amp is used for a small additional VCA just for the LFO signal. With the
VCA-dry-wet knob, the mix between amplified or original signal can be controlled. This dry-wet knob allowed me to only
use one knob on the front panel for the whole VCA part, because I was running a little short on space. The whole LFO now
only uses 6 knobs in total.

3.5.5 ADSR, VCA & Outputs
For my synthesizer, I planned on building two ADSR envelopes. One for controlling the main VCA, and one for the filter
and additional features. Because I was running a little short on space for circuit boards, I decided to build the ADSRs, the
VCA and the two outputs all on one stripboard. The schematics for this section can be found on page 16 in Picture 3.10.
For the ADSRs, I first thought that I could design my own, however they were much too complicated. Therefore, I used
Yusynth’s ADSR design with some small tweaks to fit my design. I firstly reduced the input stage to two transistors instead
of one. This resulted in some trouble with the envelope, so I had to change it back to three transistors. I still only had to use
one input stage for both ADSRs, which made me save some space on the board.
For the VCA, I used René Schmitz’ design from his website schmitzbits.de. I chose this so that I could save even more space,
because this design mostly uses transistors. After the VCA, there is a bypass switch. This switch allows the user to completely
bypass the VCA, which can be useful in some uses. Therefore, U2A must amplify the signal to a level which gives the VCA
unity gain, so the level does not change if the VCA is bypassed.
The line output lowers the signal to line level and lets you change the volume with the main volume knob. For the headpho-
ne amp, I used the LM386, which is an easy to use amplifier. I had to tweak some values to make it work correctly and not
cause a lot of noise.

16

Picture 3.9 The schematic for the modulation section.
This circuit board was easy to build, because I already prototyped it on a breadboard. I put the LED into a 5mm
hole on the panel and secured it with hot glue.
The amplitude source switch was implemented later, therefore I had to drill a hole below the other features on the
front panel. It also is missing its label, which I wont be able to print on with everything already being installed.

++55

--66
77

U4BU4B
TL072TL072

R13R13
68k68k

R12R12
10k10k

R6R6
470R470R

R3R3
2k2k

11
22 33
44

WAVEFORMWAVEFORM

11

DIODE_BIASDIODE_BIAS
22

++33

--44
55

O1CO1C
LM13700LM13700

C1C1
10nF10nF

R15R15
1M1M

C5C5
100nF100nF

+12V+12V+12V+12V

11

22

33

ENVELOPE_RATE1ENVELOPE_RATE1
B10kB10k

D4D4 R21R21
10k10k

R20R20
2k2k

R4R4
10k10k

R7R7
2k2k

11

22

33

RATE1RATE1
A10kA10k R8R8

68k68k

+12V+12V

1212

--1313

++1414

DIODE_BIASDIODE_BIAS
1515

1616

O1AO1A
LM13700LM13700

11

22

33

VCA_DRY_WET1VCA_DRY_WET1
B5kB5k

R?R?
68k68k

R24R24
2k2k

D7D7
YELLOW_LEDYELLOW_LED

D8D8
1N41481N4148

+12V+12V

C7C7
10uF10uF

C6C6
10uF10uF

-12V-12V

11
22

33

A.M. SOURCEA.M. SOURCE

R?R?
68k68k

R2R2
68k68k

D1D1
1N41481N4148

11

22

33

Q1Q1
2N39062N3906

++55

--66
77

U3BU3B
TL072TL072

R
5

R
5

47
k

47
k

++55

--66
77

U2BU2B
TL072TL072

11

--22

++33

U2AU2A
TL072TL072

C4C4
47uF47uF

G
N

D
G

N
D

11
VC

C
VC

C
88

TRTR22 QQ 33

RR44

CVCV55

THRTHR 66

DISDIS 77

U5U5
NE555PNE555P

C
3

C
3

10
nF

10
nF R23R23

100R100R

R22R22
100R100R

11

22

33

DECAY1DECAY1
A100KA100K

11

22

33

ATTACK1ATTACK1
A100KA100K

D6D6
1N41481N4148

D3D3
1N41481N4148

R17R17
10k10k

11

22

33

Q3Q3
2N39042N3904

R11R11
470R470R

R14R14
10k10k

11

--22

++33

U3AU3A
TL072TL072

R9R9
68k68k D2D2

1N41481N4148
11

22

33

Q2Q2
2N39062N3906

R16R16
470R470R

R19R19
4k74k7

++55

--66
77

U1BU1B
TL072TL072

11

--22

++33

U1AU1A
TL072TL072

C2C2
470nF470nF

R10R10
47k47k

R1R1
10k10k

D5D5

R18R18
10k10k

11

--22

++33

U4AU4A
TL072TL072

GATEGATE

ENVELOPEENVELOPE

SQUARESQUARE

ENVELOPEENVELOPE

MOD_WHEEL_RATEMOD_WHEEL_RATE

ENVELOPEENVELOPE

TRIANGLETRIANGLE

SINESINE

SQUARESQUARE
TRIANGLETRIANGLE

SINESINE

OUTPUTOUTPUT

MOD_WHEEL_AMPL.MOD_WHEEL_AMPL.

OSCILLATOROSCILLATOR

100nF cap near100nF cap near
power railspower rails
of all ICsof all ICs

DECOUPLINGDECOUPLING

A/R - ENVELOPEA/R - ENVELOPE

OSCILLATOR RATE CONTROLOSCILLATOR RATE CONTROL

TRIANGLE TO SINETRIANGLE TO SINE

VCAVCA

17

R23 R23
10k 10k

D
2

D
2

R
20

R
20

10
0R

10
0R

R
14

R
14 51
k

51
k

11

22

33

H
EA

D
PH

O
N

ES
H

EA
D

PH
O

N
ES

A1
0k

A1
0k

+1
2V

+1
2V

C3 C3
10n 10n

C
6

C
6

10
u

10
u

C
5

C
5

47
0u

47
0u

R
3

R
3

15
k

15
k

11

22

33

AT
TA

C
K

AT
TA

C
K

A1
M

A1
M

C
8

C
8

10
u

10
u

R
24

R
24

47
0R

47
0R

R
15

R
15

1M1M

-1
2V

-1
2V

-1
2V

-1
2V

+1
2V

+1
2V

R
17

R
17 4.
7k

4.
7k

R
22

R
22

10
0R

10
0R

R
21

R
21

10
0R

10
0R

11

22

33

Q
7

Q
7

+1
2V

+1
2V

+1
2V

+1
2V

R
25

R
25 22
k

22
k

11

22

33 Q
9

Q
9 2N

39
04

2N
39

04

R1 R1
10k 10k

+1
2V

+1
2V

R
2

R
2 22
k

22
k

11

22

33

C
4

C
4 4.
7u

4.
7u

11

22

33

O
FF

SE
T

O
FF

SE
T

20
k

20
k

11

22

33 Q
3

Q
3 2N

39
04

2N
39

04

++
55

--
66

77

U
1B

U
1B

TL
07

4
TL

07
4

R
5

R
5 22
k

22
k11

22

33

Q
2

Q
2

2N
39

06
2N

39
06

GAIN GAIN 11

--
22

++
33

GND GND 44

55

V+V+66

BYPASS BYPASS77

GAIN GAIN 88

U
3

U
3

LM
38

6
LM

38
6

C
7

C
7 47
n

47
n

R
26

R
26

10
R

10
R

R
13

R
13 10
k

10
k

R
12

R
12 10
k

10
k

R
16

R
16 51
k

51
k

11
--

22

++
33

U
2A

U
2A

TL
07

2
TL

07
2

11

22

33VE
LO

C
IT

Y
VE

LO
C

IT
Y

10
k

10
k

+1
2V

+1
2V

11
22

33

BY
PA

SS
_V

C
A

BY
PA

SS
_V

C
A

11

22

33

Q
8

Q
8

BS
17

0
BS

17
0

11

22

33

SU
ST

AI
N

SU
ST

AI
N

10
k

10
k

R
9

R
9 10
k

10
k

R
6

R
6

1M1M

R
18

R
18 47
0k

47
0k

R
4

R
4 10
k

10
k

D1 D1

C
1

C
1

10
n

10
n

11

22

33 Q
6

Q
6 2N

39
04

2N
39

04

++
55

--
66

77

U
2B

U
2B

TL
07

2
TL

07
2

R
19

R
19

4.
7k

4.
7k

C2 C2
10n 10n

11

--
22

++
33

U
1A

U
1A

TL
07

4
TL

07
4

D
3

D
3

11

22

33 Q
4

Q
4 2N

39
04

2N
39

04

11

22

33

C
V_

R
EJ

EC
T

C
V_

R
EJ

EC
T

1k1k

R
7

R
7

10
0k

10
0k

R
8

R
8 47
0

47
0

11

22

33 Q
5

Q
5 2N

39
04

2N
39

04

R
11

R
11 4.
7k

4.
7k

+1
2V

+1
2V

R
10

R
10 4.
7k

4.
7k

11

22

33

D
EC

AY
D

EC
AY

A1
M

A1
M

11

22

33

R
EL

EA
SE

R
EL

EA
SE

A1
M

A1
M

+1
2V

+1
2V GND GND 11VCC VCC88

TRTR
22

QQ
33

RR
44

C
V

C
V

55

TH
R

TH
R

66

D
IS

D
IS

77
N

E5
55

P
N

E5
55

P

11

22

33

M
AI

N
_V

O
LU

M
E

M
AI

N
_V

O
LU

M
E

A1
k

A1
k

D
4

D
4

FI
LT

ER
_O

U
T

FI
LT

ER
_O

U
T

EN
VE

LO
PE

_O
U

T
EN

VE
LO

PE
_O

U
T

H
EA

D
PH

O
N

ES
_O

U
T

H
EA

D
PH

O
N

ES
_O

U
T

VE
LO

C
IT

Y(
IN

VE
R

TE
D

)
VE

LO
C

IT
Y(

IN
VE

R
TE

D
)

FI
LT

ER
_O

U
T

FI
LT

ER
_O

U
T

G
AT

E
G

AT
E

EN
VE

LO
PE

EN
VE

LO
PE

LI
N

E_
O

U
T

LI
N

E_
O

U
T

LI
N

E
O

U
TP

U
T

LI
N

E
O

U
TP

U
T

VACTROL VACTROL

H
EA

D
PH

O
N

E
AM

P
H

EA
D

PH
O

N
E

AM
P

VC
A

(R
EN

E
SC

H
M

IT
Z)

VC
A

(R
EN

E
SC

H
M

IT
Z)

AD
SR

 -
EN

VE
LO

PE
 G

EN
ER

AT
O

R
 (Y

U
SY

N
TH

)
AD

SR
 -

EN
VE

LO
PE

 G
EN

ER
AT

O
R

 (Y
U

SY
N

TH
)

2x2x

Pi
ct

ur
e

3.
10

 T
he

se
 a

re
 th

e
sc

he
m

at
ic

s
of

 a
ll

ci
rc

ui
ts

 fr
om

 th
e

la
st

 p
cb

.
So

m
e

pa
rt

s o
f

th
e

en
ve

lo
pe

 g
en

er
at

or
 li

ke
 th

e
va

ct
ro

l a
re

 p
an

el
 m

ou
n-

te
d.

 A
 v

ac
tro

l i
s e

ss
en

tia
lly

 ju
st

 an
 L

E
D

 an
d

a p
ho

to
re

sis
to

r,
an

d
ca

n
be

m

ad
e

by
 p

ut
tin

g
th

e
tw

o
pa

rt
s f

ac
e

to
 fa

ce
 in

to
 a

 h
ea

ts
hr

in
k.

18

3.6 User Manual
Due to the many features of my synthesizer and demand, I decided to create this user manual. I will go over the six main
sections of the synth.

3.6.1 Mode
The Mode section is used to control the digital section. Using the rotary switch in the middle, one of three playing modes
can be selected. In the first mode, called MIDI, the synth only respondes to incoming MIDI notes. The second mode lets
you play normally, using the keyboard. The synthesizer will send out MIDI note information from the keys pressed on the
keyboard. Additionally, CC commands for pitchbend and modulation are sent, if the wheels are used. The third mode con-
sists of four different Arpeggiator sequences (UP, DOWN, UP-DOWN & RANDOM), whose rate can be set using the rate
knob. Using the HOLD switch, notes which where pressed will be remembered and will arpeggiate. Whilst the arpeggiator is
running, clock signals are sent out from the clock output on the back panel. If an external clock is connected to the clock-in
socket, the incoming signal will overwrite the internal clock if the rate is higher. This means the synth automatically chooses
the faster clock. Therefore, if an external clock is wanted, the internal clock rate can be turned to zero using the rate knob.
The gate-signal of the synth is also available on the back panel.

3.6.2 Oscillator Bank
The oscillator bank makes up the largest section of the synthesizer. The main three signal sources, called oscillators, can be
set, tuned and modulated here. The middle three rotary knobs, called RANGE, are used to set the octave of each oscillator.
By turning the knob a step, the pitch is shifted by an octave at a time. The three tune knob to the right are used to fine tune
each oscillator. Rotating the pots will shift an oscillator by approximately ±7 semitones. Further to the right, the three rotary
knobs are used to set the output waveform of each oscillator. The top two feature triangle, moog-saw, sawtooth and pulse
waveforms. The third oscillator contains a sinusoid instead of the moog-saw.
There are different ways to modulate pitch and shape of the three oscillators. Vibrato will alter the pitch of the oscillators
using the LFO signal from the modulation section. The signal can be attenuated using the knob. PULSE WIDTH will vary
the duty-cycle of the pulse waveform. PWM, which stands for Pulse-Width-Modulation, will modulate the duty-cycle of the
pulse-waveforms using the LFO. Using the CONTOUR TARGET switch and the PITCH CONTOUR pot, the pitch of
selected oscillators can be modulated using the filter contour on the right side of the synthesizer. The amount is controlled
with the knob. The last feature, called glide or sometimes portamento, will slew the incoming pitch signal from the keyboard.
If GLIDE is turned all the way up, the oscillators will take longer to reach a new note.

3.6.3 Mixer
The mixer is used to mix various audio signals before they pass into the filter. The level of the three oscillators can be adjus-
ted using the first three knobs. An external audio-signal can be added using the knob and the input-jack on the back panel.
The mixer features a white noise source, which can also be added to the mix.
The SYNC 1&2 switch is used to synchronize oscillator one to two. This means oscillatore one will periodically reset oscil-
lator two, which can create an interesting new timbre. This feature is best used with the PITCH CONTOUR to create nice
hard-sync leads.

0

2

4 6

8

10
0

2

4 6

8

100

2

4 6

8

10

0

2

4 6

8

10

0

2

4 6

8

10

0

2

4 6

8

0

2

4 6

8

10

2

4 6

8

10 DRY WET

0

2

4 6

8

10 0

2

4 6

8

10 0

2

4 6

8

10 0

2

4 6

8

10 0

2

4 6

8

10

0

2

4 6

8

10 0

2

4 6

8

10 0

2

4 6

8

10 0

2

4 6

8

10 0

2

4 6

8

10

0

2

4 6

8

10 0

2

4 6

8

10 0

4 6

8

10 0

2

4 6

8

10

0

2

4 6

8

10

0

2

4 6

8

10

0

2

4 6

8

10

0

2

4 6

8

100

2

4 6

8

10

AP
HPBP

LP
1‘

2‘
4‘8‘

16‘

32‘

1‘

2‘
4‘8‘

16‘

32‘

1‘

2‘
4‘8‘

16‘

32‘

KEYS

MIDI

0

+6-6

+3-3

0

+6-6

+3-3

0

+6-6

+3-3

0

2

4 6

8

10

0

2

4 6

8

10

0

2

4 6

8

10

0

2

4 6

8

100

2

4 6

8

100

2

4 6

8

10

MODE MIXER FILTER MODULATION CONTOUR & AMP OUTPUTOSCILLATOR BANK

SINE

TUNE
RANGE

PULSE WIDTHVIBRATO

PWMPITCH CONTOUR

GLIDE

ARP RATE

ARP

OSC 1

OSC 2

OSC 3

EXT AUDIO

NOISE

CUTOFF STATE

RESONANCE CONTOUR

VELOCITY MODULATION

RATE

ATTACK DECAY

RATE
CONTOUR

AMPLITUDE
CONTOUR

ATTACK

FILTER CONTOUR

DECAY SUSTAIN RELEASE

ATTACK DECAY SUSTAIN RELEASE

VELOCITY

PHONES

VOLUME
AMPLITUDE CONTOUR

GATE

OFF

ON

HOLD

1

1&2

CONTOUR
TARGET

OFF

ON

SYNC 1 & 2

OFF

ON

BYPASS VCA

OFF

ON

RETRIGGER
CONTOUR

WHEEL CONTOUR
LFO AMPLITUDE

Picture 3.11

19

3.6.4 Filter
The Steiner-Parker diode ladder filter is used to filter frequencies from the incoming audio signal. The filter has four states,
which can be selected using the rotary knob: Lowpass, Bandpass, Highpass and Allpass. The cutoff frequency, where the
filter starts attenuating, can be adjusted using the CUTOFF knob. The filter can also be fed back into itself using the RE-
SONANCE knob. WARNING: The Steiner-Parker filter can be very unpredictable, if the resonance is turned up. When
entering the red region, the filter can produce sounds which go from squeals and screams to loud high pitched oscillations,
which can easily hurt your ears on high volume.
The filter features three different modulation sources, which all alter the cutoff frequency. The COUNTOUR knob can be
used to modulate the filter cutoff using the filter-envelope on the second last section. The VELOCITY knob will alter the
envelope, therefore I will explain it in the Contour & Amplifier section. The MODULATION knob will alter the cutoff
with the LFO signal.

3.6.5 Modulation Section and Wheels
The modulation section is the most complicated one to understand, which is coincidentally also the one I designed myself.
In a nutshell, this section consists of an LFO or Low-Frequency-Oscillator, which is modulated using a simple Attack-De-
cay-Envelope. The LFO is an oscillator at a rate below audible frequency. It is used to modulate different parameters of the
synthesizer like pitch or filter-cutoff. With the first knob, the rate can be adjusted. The rotary switch to the right is used to
switch the waveform of the oscillator between a sinusoidal, triangle or square waveform.
The lowest two knobs control the attack and decay time of the small AD-Envelope, which restarts every time a key is pres-
sed. The first of the middle knobs, called RATE CONTOUR, controls how much the envelope will affect the rate of the
LFO. This will make the LFO speed up or slow down when a key is pressed on the board. The second knob is used to adjust
how much the envelope will affect the amplitude of the LFO. Unlike the rate, which just adds up the two voltages, this DRY-
WET knob will let you adjust between 0% effect on the amplitude and 100% effect on it. Therefore, if the knob is all the
way on DRY, the amplitude will always be 100% and not depend on the envelope. But if the knob is all the way on WET,
the amplitude of the LFO will directly correspond to the contour.
After realizing the importance of using the modulation-wheel on the left to control the amount of LFO, I added and extra
switch on the bottom. This switch can be used to overwrite the signal of the envelope with the one from the modulation
wheel. This lets you choose between wheel or envelope.
However, the modulation wheel can also be used to affect the rate of the LFO. The switch on the wheel-panel can be used
to switch the modulation-wheel between rate or amplitude of the LFO. The potentiometer next to it also lets you attenuate
the amount of modulation wheel before entering the switch. The last pot on the wheel-panel lets you add the modulation-
wheel voltage to the filter cutoff. Turning the wheel will therefore raise the filter cutoff.

0

2

4 6

8

10
0

2

4 6

8

100

2

4 6

8

10

0

2

4 6

8

10

0

2

4 6

8

10

0

2

4 6

8

0

2

4 6

8

10

2

4 6

8

10 DRY WET

0

2

4 6

8

10 0

2

4 6

8

10 0

2

4 6

8

10 0

2

4 6

8

10 0

2

4 6

8

10

0

2

4 6

8

10 0

2

4 6

8

10 0

2

4 6

8

10 0

2

4 6

8

10 0

2

4 6

8

10

0

2

4 6

8

10 0

2

4 6

8

10 0

4 6

8

10 0

2

4 6

8

10

0

2

4 6

8

10

0

2

4 6

8

10

0

2

4 6

8

10

0

2

4 6

8

100

2

4 6

8

10

AP
HPBP

LP
1‘

2‘
4‘8‘

16‘

32‘

1‘

2‘
4‘8‘

16‘

32‘

1‘

2‘
4‘8‘

16‘

32‘

KEYS

MIDI

0

+6-6

+3-3

0

+6-6

+3-3

0

+6-6

+3-3

0

2

4 6

8

10

0

2

4 6

8

10

0

2

4 6

8

10

0

2

4 6

8

100

2

4 6

8

100

2

4 6

8

10

MODE MIXER FILTER MODULATION CONTOUR & AMP OUTPUTOSCILLATOR BANK

SINE

TUNE
RANGE

PULSE WIDTHVIBRATO

PWMPITCH CONTOUR

GLIDE

ARP RATE

ARP

OSC 1

OSC 2

OSC 3

EXT AUDIO

NOISE

CUTOFF STATE

RESONANCE CONTOUR

VELOCITY MODULATION

RATE

ATTACK DECAY

RATE
CONTOUR

AMPLITUDE
CONTOUR

ATTACK

FILTER CONTOUR

DECAY SUSTAIN RELEASE

ATTACK DECAY SUSTAIN RELEASE

VELOCITY

PHONES

VOLUME
AMPLITUDE CONTOUR

GATE

OFF

ON

HOLD

1

1&2

CONTOUR
TARGET

OFF

ON

SYNC 1 & 2

OFF

ON

BYPASS VCA

OFF

ON

RETRIGGER
CONTOUR

WHEEL CONTOUR
LFO AMPLITUDE

WAVE SELECT

LFO SIGNAL FLOW

VCA

DRY/WET

LFO
AMPLITUDERATE

CONTOUR

RATE
CONTOUR

WHEEL

OUTPUT

DECAY

EG

ATTACKMOD WHEEL

MOD WHEEL
TARGET

Picture 3.13 To visualize the rather complex signal flow
of the modulation section, I made this diagram. It
shows the signal flow of all control voltages which in-
teract with the LFO.

Picture 3.12

20

3.6.6 Contour, Amplifier & Output
This section contains the two main envelope generators and the voltage controlled amplifier. Both envelopes consist of stan-
dard ADSR envelopes. Attack, decay and release time can be adjusted with the appropriate knobs, as well as the sustain level.
The upper envelope routs to the VCA and is used to control the change in level of the sound. Therefore, the synthesizer
remains silent until a key is pressed, which will trigger the envelope. If the VCA and envelope is not required, the VCA can
be completely bypassed using the BYPASS VCA switch on the bottom.
The second envelope has two uses. The first is to control the filter cutoff using the envelope. This is done using the CON-
TOUR knob in the filter section. The second use is controlling the pitch of oscillators as explained earlier.
The two VELOCITY knobs, one being placed in the filter section and one here, influence the sustain level of their corre-
sponding envelope. If a velocity knob is turned up, the speed of a keystroke will have effect on the amount of sustain on the
envelope. The shortest possible velocity time will correspond to a sustain value similar to the one set on the panel. Longer
velocity times will reduce the sustain value. The longest possible time will result in zero sustain if the velocity knob is turned
all the way up.
The additional SINE knob is used to bypass oscillator 3 past the filter. This signal will always be sinusoidal, independent
from the waveform oscillator 3 is currently set to. This SINE features is added to give certain sounds a stronger low end.
Especially if the filter is in bandpass or highpass mode, where most of the bass is filtered out.
The output section features a volume knob to adjust the level of the main line output on the back panel. A stereo headphone
out is provided with an additional volume knob.

Picture 3.14

0

2

4 6

8

10
0

2

4 6

8

100

2

4 6

8

10

0

2

4 6

8

10

0

2

4 6

8

10

0

2

4 6

8

0

2

4 6

8

10

2

4 6

8

10 DRY WET

0

2

4 6

8

10 0

2

4 6

8

10 0

2

4 6

8

10 0

2

4 6

8

10 0

2

4 6

8

10

0

2

4 6

8

10 0

2

4 6

8

10 0

2

4 6

8

10 0

2

4 6

8

10 0

2

4 6

8

10

0

2

4 6

8

10 0

2

4 6

8

10 0

4 6

8

10 0

2

4 6

8

10

0

2

4 6

8

10

0

2

4 6

8

10

0

2

4 6

8

10

0

2

4 6

8

100

2

4 6

8

10

AP
HPBP

LP
1‘

2‘
4‘8‘

16‘

32‘

1‘

2‘
4‘8‘

16‘

32‘

1‘

2‘
4‘8‘

16‘

32‘

KEYS

MIDI

0

+6-6

+3-3

0

+6-6

+3-3

0

+6-6

+3-3

0

2

4 6

8

10

0

2

4 6

8

10

0

2

4 6

8

10

0

2

4 6

8

100

2

4 6

8

100

2

4 6

8

10

MODE MIXER FILTER MODULATION CONTOUR & AMP OUTPUTOSCILLATOR BANK

SINE

TUNE
RANGE

PULSE WIDTHVIBRATO

PWMPITCH CONTOUR

GLIDE

ARP RATE

ARP

OSC 1

OSC 2

OSC 3

EXT AUDIO

NOISE

CUTOFF STATE

RESONANCE CONTOUR

VELOCITY MODULATION

RATE

ATTACK DECAY

RATE
CONTOUR

AMPLITUDE
CONTOUR

ATTACK

FILTER CONTOUR

DECAY SUSTAIN RELEASE

ATTACK DECAY SUSTAIN RELEASE

VELOCITY

PHONES

VOLUME
AMPLITUDE CONTOUR

GATE

OFF

ON

HOLD

1

1&2

CONTOUR
TARGET

OFF

ON

SYNC 1 & 2

OFF

ON

BYPASS VCA

OFF

ON

RETRIGGER
CONTOUR

WHEEL CONTOUR
LFO AMPLITUDE

21

4 Conclusion
During the building of my synthesizer, there were some difficulties. Some due to bad planning, not thinking everything
through or just small errors which I had to find and remove. The biggest problem was not thinking the signal flow and the
design of the LFO completely through. Using the LFO for modulation in my synthesizer is very unusual compared to ot-
hers. To fix this problem I had to add an additional switch on the front panel to simplify the use of the modulation wheel in
combination with the LFO. I believe those complications where due to wanting all possible modulation variations accessible
on the front panel using only switches and knobs. For future projects, I will approach different modulation features more
like they are done in monophonic synthesizers today, like the Moog Subharmonicon. Those synthesizers replace the inner
routings with output jacks on the front panel. This allows the user to connect jacks using small patch cables. Additionally, the
instrument can be connected to a modular synthesizer in Eurorack format, making the possibilities endless.
A problem which is hard to avoid while prototyping, is interference. Even if synthesizers usually use very simple electronics
not susceptible to noise and interference, I still managed to get noise from the white-noise source to bleed into the audio
path even if it was turned off. After a lot of experimenting and searching for the problem, I realized that the mixer used very
weak signals to operate. This was due to not buffering the mixer and just passively mixing the signal and passing it on to the
filter. To fix this problem, I completely replaced the circuit board which housed the noise source and mixer with a new and
improved noise and mixer circuit.
A final thing I would approach differently in the future, is building each circuit on a separate strip board. Even though it
makes it easy to take out and debug, I spent around half of my time just cutting and crimping the cables which connected
board to board. Also, having tons of loose cables hanging around makes finding interference problems a lot harder. For my
next big synthesizer project, I will design everything on a big circuit board. On such a large scale I will definitely save a lot
of time and hassle.

5 Acknowledgements
First, I want to thank my supervisor Christian Freiburghaus. Due to his own experience in building synthesizers, he could
help me a lot with planning and constructing my own. Next, I want to thank my former art teacher Sacha Christener for
teaching me the process of screen printing and letting me use the equipment for it at my old school. Also a special thanks
to my class mate Nico Lenz for 3D-printing the modulation and pitch wheels for my synthesizer. A huge thanks to Jonas
Biedermann for proofreading my paper and helping me gain ideas. Lastly, I will thank my parents for the occasional financial
and emotional support.

22

6 Appendix

6.1 Table of figures
Picture 2.1 Minimoog Model D, September 2020
https://community.mixedinkey.com/BlogPosts/gadgets-moog-synthesizer

All other pictures, illustrations and schematics were shot, designed or drawn by me. For schematics I used the free program
KiCad. For illustrations I used Adobe Illustrator. 3d Models were designed in Blender3d. This paper was written in Adobe
InDesign.

6.2 Table of sources
6.2.3 Webpages
Arturia Minibrute, September 2020
https://en.wikipedia.org/wiki/Arturia_MiniBrute

Steiner-Parker Synthacon, September 2020
https://en.wikipedia.org/wiki/Steiner-Parker_Synthacon

Minimoog Model D, September 2020
https://de.wikipedia.org/wiki/Moog_Minimoog

History of Minimoog, September 2020
https://www.youtube.com/watch?v=sLx_x5Fuzp4 History of Minimoog

MIDI, September 2020
https://de.wikipedia.org/wiki/Musical_Instrument_Digital_Interface

Adafruit MCP4728, September 2020
https://learn.adafruit.com/adafruit-mcp4728-i2c-quad-dac/arduino

Syntherjack Power Supply, September 2020
https://syntherjack.net/modular-synth-power-supply/

Steiner-Parker Filter & LFO Schematic, September 2020
https://yusynth.net/index_en.php

VCA & Noise Source Schematics, September 2020
https://www.schmitzbits.de/

Lots of inspiration and DIY knowledge, LOOKMUMNOCOMPUTER
https://www.lookmumnocomputer.com/

6.2.3 Books
Florian Anwander, SYNTHESIZER, 2001

23

6.3 Additional Pictures

Picture 6.1 Another angle of the finished synthesizer. The back panel is visible in this picture.

Picture 6.2 This picture shows all electronics. Also, the heatsink on the top left and the stand on
the right is visible. The ribbons on both sides stop the upper part from overrotating and destroying
the hinge.

24

6.4 Additional Schematics

Picture 6.3 The keyboard button matrix

A4A411
S1S1 1010
S0S0 1111

A3A31212

A0A01313

A1A11414

A2A21515

VC
C

VC
C

1616

A6A622

AA 33

A7A744

A5A555

~E~E 66

VE
E

VE
E

77

G
N

D
G

N
D

88

S2S2 99

74
H

C
40

51
74

H
C

40
51

+5V+5V

10k10k

11
22
33
44
55
66
77
88
99

+5V+5V

+5V+5V

R?R?
220R220R

QBQB 11

~SRCLR~SRCLR1010
SRCLKSRCLK1111

RCLKRCLK1212

~OE~OE1313

SERSER1414 QAQA 1515

VC
C

VC
C

1616

QCQC 22

QDQD 33

QEQE 44

QFQF 55

QGQG 66

QHQH 77

G
N

D
G

N
D

88

QH'QH' 99

74
H

C
59

5
74

H
C

59
5

+5V+5V+12V+12V

C?C?
100nF100nF

C?C?
47uF47uF

C?C?
100nF100nF

11

1010
1111
1212

22
33
44
55
66
77
88
99

ININ11

G
N

D
G

N
D

22

OUTOUT 33

U?U?
L7805L7805

QBQB 11

~SRCLR~SRCLR1010
SRCLKSRCLK1111

RCLKRCLK1212

~OE~OE1313

SERSER1414 QAQA 1515

VC
C

VC
C

1616

QCQC 22

QDQD 33

QEQE 44

QFQF 55

QGQG 66

QHQH 77

G
N

D
G

N
D

88

QH'QH' 99

74
H

C
59

5
74

H
C

59
5

11

22

33
44 55

+5V+5VR?R?
220R220R

11

22 44
55
66

U?U?
4N354N35

D?D?
1N41481N4148 11 22

BYPASSBYPASS

R?R?
220R220R

R?R?
2k2k

+5V+5V

11

22

33
44 55

R
O

W
_1

2
R

O
W

_1
2

COLUMN_7COLUMN_7

D5_ARDUINOD5_ARDUINO

D6_ARDUINOD6_ARDUINO

D9_ARDUINOD9_ARDUINO

TX_ARDUINOTX_ARDUINO

D10_ARDUINOD10_ARDUINO

D8_ARDUINOD8_ARDUINO
D7_ARDUINOD7_ARDUINO

R
O

W
_1

0
R

O
W

_1
0

COLUMN_8COLUMN_8

COLUMN_6COLUMN_6

COLUMN_5COLUMN_5

COLUMN_4COLUMN_4

COLUMN_3COLUMN_3

COLUMN_2COLUMN_2

COLUMN_1COLUMN_1

COLUMN_9COLUMN_9

D11_ARDUINOD11_ARDUINO

R
O

W
_0

1
R

O
W

_0
1

RX_ARDUINORX_ARDUINO

R
O

W
_0

2
R

O
W

_0
2

D13_ARDUINOD13_ARDUINO

R
O

W
_0

3
R

O
W

_0
3

R
O

W
_0

4
R

O
W

_0
4

R
O

W
_0

5
R

O
W

_0
5

R
O

W
_0

6
R

O
W

_0
6

R
O

W
_0

7
R

O
W

_0
7

R
O

W
_0

8
R

O
W

_0
8

R
O

W
_0

9
R

O
W

_0
9

R
O

W
_1

1
R

O
W

_1
1

TO_KEYBOARDTO_KEYBOARD FROM_KEYBOARDFROM_KEYBOARD

From solder sideFrom solder side

MIDI INMIDI IN

MIDI OUTMIDI OUT

From solder sideFrom solder side

25

#include <Wire.h>
#include <Adafruit_MCP4728.h>
Adafruit_MCP4728 mcp;
#include <SPI.h>
#include <MIDI.h>
MIDI_CREATE_DEFAULT_INSTANCE();

void setDac(int key, byte vel);

//////// IO PINS //////
// SHIFT REGISTERS
#define LATCH 10
#define MOSI 11
#define SCLK 13

//MULTIPLEXER
#define A 7
#define B 8
#define C 9

//MULTIPLEXED IN
#define IN1 6
#define IN2 5

#define MODULATION A2
#define PITCHBEND A3
#define RATE A6
#define MODESWITCH A7
#define HOLD 4

#define GATE 2
#define CLKOUT 3
#define CLKIN A1
//////////////////////

#define MIDI_NOTE_OFFSET 24

#include „Note.h“
#include „Key.h“
#include „Arpeggiator.h“

int lastPB, lastMod, lastSwitchPos, 		
	 lastPitch;

Key keys[49];

int midiNotesPlayed = 0;

Arpeggiator arp;

void setup()
{
 //Serial.begin(115200);
 mcp.begin();

 MIDI.begin(MIDI_CHANNEL_OMNI);
 MIDI.setHandleNoteOn(midiNoteOn);

This is the first line of my program. The Wire.h library is used
for the communication with the DAC using I2C. Additional-
ly the DAC needs its own library. The SPI library is used to
transfer values to the shift registers very quickly. The MIDI
library is imported and initialised.

This line declares the setDac() function. This has to be done
in C++ if the function is used inside a different class, which is
in this case the arpeggiator class. It must be called before the
“Arpeggiator.h” class is imported.

I declare my IO-Pins all in caps-lock names. This makes it
easier to change a pin later, if a connection has changed on
the pcb.

This note offset must be used to send MIDI notes. The lowest
note on my keyboard is a C, which does not correspond with
the lowest possible MIDI note. This offset is simply added to
the pitch.
My own classes are imported (There where four files original-
ly. I have put them all together into the same text here).

The Arduino has its setup function, which runs once in the
beginning. The DAC and MIDI are both started.

6.5 Arduino Code (C++)

26

 MIDI.setHandleNoteOff(midiNoteOff);

 pinMode(MOSI, OUTPUT);
 pinMode(SCLK, OUTPUT);
 pinMode(LATCH, OUTPUT);

 pinMode(A, OUTPUT);
 pinMode(B, OUTPUT);
 pinMode(C, OUTPUT);

 pinMode(HOLD, INPUT_PULLUP);

 pinMode(GATE, OUTPUT);
 pinMode(CLKOUT, OUTPUT);

 SPI.setBitOrder(MSBFIRST);
 SPI.setDataMode(SPI_MODE0);
 SPI.setClockDivider(SPI_CLOCK_DIV8);
 SPI.begin();

 digitalWrite(LATCH, LOW);
 digitalWrite(GATE, LOW);
 digitalWrite(CLKOUT, LOW);

 for (int i = 0; i < 49; i++)
 {
 keys[i] = Key();
 }

 arp = Arpeggiator();
}

void setDac(int key, byte vel)
{
 int pitch = int(key * 1000L / 12L);

 mcp.setChannelValue(
	 MCP4728_CHANNEL_B, pitch,
 	MCP4728_VREF_INTERNAL,
	 MCP4728_GAIN_2X);
 mcp.setChannelValue(
	 MCP4728_CHANNEL_A, vel * 32,
	 MCP4728_VREF_INTERNAL,
	 MCP4728_GAIN_2X);
}

void midiNoteOn(
	 byte channel, byte pitch,
	 byte velocity)
{
 int p = pitch - MIDI_NOTE_OFFSET;
 if (p >= 0 && p < 49)
 {
 midiNotesPlayed++;
 digitalWrite(GATE, HIGH);
 setDac(p, velocity);
 }
}

Those two lines give the MIDI library a function to call, if a
MIDI-message is received.

All pin modes are declared.

The INPUT_PULLUP internally pulls up a signal. This makes
it easy to add a switch or button, because it only needs an ex-
ternal ground connection.

SPI is setup.

The keys[] array and the arpeggiator are initialized.

This function sets the voltages on the DAC.

The pitch is calculated to millivolt steps. Pitch as voltage is
represented as volts per octave.
I copied those lines from adafruit.com.

The next two functions take care of incoming MIDI-mes-
sages. The pitch is offset, gate gets updated and the DAC gets
set. The integer midiNotesPlayed keeps track on the number
of notes pressed in MIDI mode. If This value turns to zero,
the gate is set low.

27

void midiNoteOff(byte channel, byte pitch, 	
	 byte velocity)
{
 int p = pitch - MIDI_NOTE_OFFSET;
 if (p >= 0 && p < 49)
 {
 midiNotesPlayed--;

 if (midiNotesPlayed <= 0)
 {
 midiNotesPlayed = 0;
 digitalWrite(GATE, LOW);
 }
 }
}

class Key
{
public:
 bool pad1, pad2;
 unsigned long initialPress;
 byte velocity;
 bool pressed;

 Key()
 {
 pad1 = pad2 = pressed = false;
 }
};

class Note
{
public:
 int pitch;
 byte velocity;

 Note(){};

 Note(int pitch, byte velocity)
 {
 this->pitch = pitch;
 this->velocity = velocity;
 }
};

byte calcVel(unsigned long dt) //dt in ms
{
 // VELOCITY FIXPOINTS
 // C(5 ms, 0)
 // A(20 ms, 63)
 // B(100 ms, 127)

 int value;

 if (dt > 20)
 value = (4 * (int)dt + 235) / 5;

As mentioned, I used an array of this class to store the state of
notes on the keyboard. I did not do this initially and changed it
later. Storing every note very detailed has a lot of upsides, for
example: I could physically represent a mechanical keyboard
with high note priority and keyboard gate. Every loop I could
check the most upper note and the number of notes played.
This also simplified the arpeggiator drastically because I could
just copy every pressed note into an array for later use.

While coding, I needed to differentiate between a note and a
key. I thought of a key as a physical representation of what is
happening on the keyboard. Therefore, I used the “Key” class
for the last step. For copying notes to the arpeggiator class, I
used this “Note” class.

The previously mentioned “calcVel” function takes in the mil-
lisecond difference between the two button presses of each
key. I used the program Geogebra to sketch out fixpoints.
Those I could later use to calculate linear equations for a velo-
city curve. All of this could be replaced by a simple exponenti-
al equation, but I thought on my slow Arduino an exponential
function could produce to much lag and delay, which could
for example become apparent if the Arpeggiator would start
lagging.

28

 else
 value = (21 * (int)dt - 105) / 5;

 value = 127 - value;

 if (value > 127) value = 127;
 else if (value < 0) value = 0;

 return value;
}

void detectKeys()
{
 for (int j = 0; j < 9; j++)
 {
 digitalWrite(A, (j >> 0) & 1);
 digitalWrite(B, (j >> 1) & 1);
 digitalWrite(C, (j >> 2) & 1);

 bool extrawurst = (j == 8);
 int loopLength = extrawurst ? 2 : 12;

 for (int i = 0; i < loopLength; i++)
 {
 byte sr1 = 1 << i;
 byte sr2 = i>=8 ? (1 << (i-8)) : 0;

 SPI.transfer(sr2);
 SPI.transfer(sr1);
 digitalWrite(LATCH, HIGH);
 digitalWrite(LATCH, LOW);

 delayMicroseconds(2);

 bool now;

 if (extrawurst)
 {
 now = digitalRead(IN2);
 }
 else
 {
 now = digitalRead(IN1);
 }

 int key = j * 6 + i / 2;

 bool last;
 if (i % 2 == 0)
 {
 last = keys[key].pad1;
 keys[key].pad1 = now;
 }
 else
 {
 last = keys[key].pad2;
 keys[key].pad2 = now;
 }

This function reads the keyboard. It starts out by looping over
the 9 output lines of the keyboard matrix.
Then the multiplexers are set with the binary digits of index j.

The boolean “extrawurst” is used to show if the 9. row of
the outputs is used, because then the additional input must
be used.

Another for-loop is started with either a length of 12 or 2
depending on the “extrawurst”.
The bytes “sr1” and “sr2” are then sent out by the shift regis-
ters. They represent all zeros except for a single one. This is
achieved by left-shifting 1 in binary by the index i.
Then the shift registers output is updated by triggering the
RCLK pin.

To detect if a key is newly pressed or released the code keeps
track of two variables: “now” and “last”. Now is set to the
current output of the keyboard matrix.

The key number is calculated using i and j.

“last” represents the state of the button last time it was read.
It is stored in an array of “Keys”.

29

 if (now && !last)
 {
 if (i % 2 == 0)
 {
 keys[key].initialPress = 			
				 millis();
 }
 else
 {
 keys[key].pressed = true;

 unsigned long t2 = millis();
 unsigned long t1 = keys[key].		
				 initialPress;

 byte vel;
 if (t2 > t1)
 {
 vel = calcVel(t2 - t1);
 }

 keys[key].velocity = vel;

 if (!arp.enabled)
 {
 MIDI.sendNoteOn(MIDI_NOTE_		
			 OFFSET + key, vel, 1);
 }
 }
 }

 else if (!now && last)
 {
 if (i % 2 == 1)
 {
 keys[key].pressed = false;

 if (!arp.enabled)
 {
 MIDI.sendNoteOff(MIDI_NOTE_		
			 OFFSET + key, 0, 1);
 }
 }
 }
 }
 }
}

int switchPos()
{
 int sw = analogRead(MODESWITCH);

 if (sw < 102) //MIDI
 return 2;

 else if (sw > 102 && sw < 307) //KEYBOARD
 return 1;

If a button is newly pressed, now should be true but last
should not.
The program needs to differentiate between the first and se-
cond button of every key. This is done by calculating if “i” is
even or odd. If the first button is pressed, the system time is
stored using “millis()”.
If the second button is pressed, the key is now counted as
pressed. System time is again used to calculate the time diffe-
rence between the two buttons. The function “calcVel()” re-
turns a byte with velocity values from 0 to 127.

If the synthesizer is not in arpeggiator-mode MIDI messages
are sent to indicate if keys are pressed or released.

This part of the code is similar to the last part and is executed,
if a key is released.

The switchPos function reads the state of the rotaty switch
in the MODE section on the front panel. Every step of the
switch is a voltage between 0v and 5v, which is in code repre-
sented by a 10-bit number between 0 and 1023.

30

 else if (sw > 307) //ARP
 {
 if (sw < 512)
	 arp.mode = 0; // up
 else if (sw > 512 && sw < 716)
	 arp.mode = 1; // down
 else if (sw > 716 && sw < 912)
	 arp.mode = 2; // up & down
 else if (sw > 912)
	 arp.mode = 3; // random

 return 0;
 }
}

void loop()
{
 int swchPos = switchPos();

 if (swchPos == 0 &&
	 swchPos != lastSwitchPos)
 {
 arp.enabled = true;
 }
 else if (lastSwitchPos == 0 &&
	 swchPos != lastSwitchPos)
 {
 arp.enabled = false;
 MIDI.sendNoteOff(MIDI_NOTE_OFFSET
		 + arp.lastPitch, 0, 1);
 }
 else if (lastSwitchPos == 2
	 && swchPos != lastSwitchPos)
 {
 //midi deselected
 midiNotesPlayed = 0;
 digitalWrite(GATE, LOW);
 }
 else if (lastSwitchPos == 1
	 && swchPos != lastSwitchPos)
 {
 for (int i = 0; i < 49; i++)
 {
 if (keys[i].pressed)
 {
 MIDI.sendNoteOff(
		 MIDI_NOTE_OFFSET + i, 0, 1);
 }
 }
 digitalWrite(GATE, LOW);
 }
 lastSwitchPos = swchPos;

 if (swchPos == 2)
 {
 //MIDI IN

 MIDI.read();

If the arpeggiator is selected, additionally to the return value,
there is also the arp.mode. This controls the order of notes on
the arpeggiator.

This is the main loop. The Arduino repeatitly calls this func-
tion after the setup.
Firstly, the switch position on the main panel is read. The
function switchPos() returns an integer. 0 represents the ar-
peggiator, 1 is normal play and 2 stands for MIDI in.
Those first few if-statements detect if the switch position
changed since the last loop. This is necessary, for example,
when a note is pressed on the keyboard and the mode is swit-
ched to MIDI. The program must remove the note manually
and reset the gate voltage. All those instructions are for pur-
poses like this.

From here the main executions begin.

31

 if (!digitalRead(HOLD)) //safety reset
 {
 midiNotesPlayed = 0;
 digitalWrite(GATE, LOW);
 }
 }
 else
 {
 detectKeys();

 int notesPlayed = 0;
 Note notes[16];
 for (int i = 0; i < 49; i++)
 {
 if (keys[i].pressed)
 {
 notes[notesPlayed] =
		 Note(i, keys[i].velocity);
 notesPlayed++;
 if (notesPlayed >= 16)
 {
 break;
 }
 }
 }

 if (swchPos == 0)
 {
 //Arpeggiator

 arp.arpeggiate(notes, notesPlayed);
 }
 else
 {
 //Keyboard play

 if (notesPlayed > 0)
 {
 digitalWrite(GATE, HIGH);

 int pitch = notes[
		 notesPlayed - 1].pitch;
 byte vel = notes[
		 notesPlayed - 1].velocity;

 setDac(pitch, vel);
 }
 else
 {
 digitalWrite(GATE, LOW);
 }
 }

 //PITCHBEND
 int pbRead = analogRead(PITCHBEND);
 if (abs(lastPB - pbRead) > 1)
 {
 lastPB = pbRead;
 int value = (pbRead - 512) * 16;

If MIDI mode is selected, MIDI is read using the MIDI lib-
rary. If messages are received, the MIDI library triggers midi-
NoteOn and midiNoteOff functions which we will see later.
Also, the gate voltage is set depending on the notes pressed.

If the arpeggiator or the normal play is selected, some func-
tion are carried out.
The detectKeys() function from earlier updates the keys[] ar-
ray.

The first 16 notes in the keys[] array are separated out and
counted.

If the arpeggiator is selected, the arp.arpeggiate() function is
called and the played notes are passed in.

Otherwise, if normal play is selected, gate is updated and the
DAC is set using pitch and velocity values. The value of the
most upper note in the notes[] array is used, making it high-
note priority.

Lastly, pitchbend and modulation voltages are read. If the dif-
ference since the last value is greater than 1, a midi messages
is sent. There is no need to send those values to the DAC,
because the voltages on the wheels are directly sent into the
VCOs etc. using analog circuity.

32

 MIDI.sendPitchBend(value, 1);
 }

 //MODULATION
 int modRead = analogRead(MODULATION);
 if (abs(lastMod - modRead) > 1)
 {
 lastMod = modRead;
 MIDI.sendControlChange(1, modRead / 	
					 8, 1);
 }
 }
}

class Arpeggiator
{
public:
 bool enabled = false;
 int mode = 0;
 Note heldNotes[16];
 int heldCount;
 int lastCount = 0;
 Note maxNotes[16];
 int maxCount = 0;
 unsigned long lastHalfStep = 0;
 int index = 0;
 bool state = false;
 unsigned long halfPeriod = 100;
 int dir = 1;
 bool lastHold = false;
 int lastPitch;

 Arpeggiator() {}
 void arpeggiate(Note notes[], int count);
 int calcArpPeriod();
};

void Arpeggiator::arpeggiate(Note
newNotes[16], int newCount)
{
 Note *notes;
 int count;

 bool hold = !digitalRead(HOLD); //
electrically pulled up => false means hold
is active

 if (!lastHold && hold)
 {
 heldCount = 0;
 }
 lastHold = hold;

 if (hold)
 {
 if (newCount > lastCount)
 {
 // COPY NOTES
 maxCount = newCount;

All the arpeggiator logic is stored in this class. This made the
code less messy.

There are a lot of different forms of notes and counts, mainly
used for the hold-function. A note[] array stores notes and the
corresponding count stores the number of notes in the array.

The main function of the arpeggiator is called arpeggiate()
and takes in the notes which are currently pressed on the key-
board. Those new notes have the prefix new.
The notes and the count without any prefix represent an
empty array, which at the end of the function will be filled
using the current notes that will be played by the arpeggiator.

The state of the hold switch is detected.

If hold is selected, the arpeggiator needs to detect if any new
notes are added to the current notes. If the new count is larger
than the last count the amount of pressed notes has increased
and the maxNotes[] array is overwritten.

33

 for (int i = 0; i < newCount; i++)
 {
 maxNotes[i] = Note(newNotes[i].		
		 pitch, newNotes[i].velocity);
 }
 }

 if (newCount == 0 && lastCount != 0)
 {
 // COPY NOTES
 heldCount = maxCount;
 for (int i = 0; i < maxCount; i++)
 {
 heldNotes[i] = Note(maxNotes[i].		
		 pitch, maxNotes[i].velocity);
 }
 }

 notes = heldNotes;
 count = heldCount;
 }
 else
 {
 notes = newNotes;
 count = newCount;
 }

 lastCount = newCount;

 halfPeriod = calcArpPeriod();
 if(lastHalfStep + halfPeriod < millis())
 {
 if (count > 0)
 {
 if (state)
 {
 digitalWrite(GATE, HIGH);
 state = !state;

 if (mode == 0) // up
 {
 index++;
 }
 else if (mode == 1) // down
 {
 index--;
 }
 else if (mode == 2) // up & down
 {
 index += dir;
 if (index==count-1) dir = -1;
 else if (index==0) dir = 1;
 }
 else // random
 {
 index = random(count);
 }

 if (index < 0) index += count;

If the amount of pressed notes returns back to zero, those
notes will be held, if no further note is pressed. The heldNo-
tes[] array keeps track of the held notes.

The held notes are copied to the final notes.

If hold is not used, the new notes are copied to the final notes,
as easy as that.

The main oscillation of the arpeggiator is done using this if-
statement. Because the arpeggiator must update twice every
note it plays to update the gate, I am using the variable half-
Period. This time is calculated using the function calcArpPe-
riod().

The variable state indicates if the arpeggiator is in up or down
position. The gate gets updated like expected.
Mode 0 lets the arpeggiator step upwards through the notes.
This can be done by increasing the index.

Mode 1 works similar.

Mode 2 increases the index by the integer dir which is either
a 1 or a -1. If the arpeggiator reaches a corner, the direction
is switched.

Mode 3 is the simplest of all. It picks a random integer as the
index.

34

 index %= count;

 int pitch = notes[index].pitch;
 byte vel = notes[index].velocity;
 setDac(pitch, vel);
 MIDI.sendNoteOn(MIDI_NOTE_OFFSET
		 + pitch, vel, 1);
 lastPitch = pitch;
 }
 else
 {
 state = !state;
 digitalWrite(GATE, LOW);
 MIDI.sendNoteOff(MIDI_NOTE_OFFSET
		 + lastPitch, 0, 1);
 }
 }
 else
 {
 digitalWrite(GATE, LOW);
 index = -1;
 MIDI.sendNoteOff(MIDI_NOTE_OFFSET
		 + lastPitch, 0, 1);
 }

 lastHalfStep = millis();
 }
}

int Arpeggiator::calcArpPeriod()
{
 long rate = analogRead(RATE);

 // arp rate fixpoints (ms)
 // (0 / 2000)
 // (500 / 200)
 // (1024 / 10)

 if (rate > 500)
 return (int)
	 ((-95L * rate + 99900L) / 262L);
 else
 return (int)
	 ((-18L * rate + 10000L) / 5L);
}

If the arpeggiator reaches the beginning or the end of the
array, the count is added or substracted.

The DAC is set and MIDI-note messages are sent.

If the arpeggiator is in the down state, the gate is set low and
the last sent MIDI note is turned off again.

This function reads the potentiometer on the front panel. Si-
milarly to the velocity-function, this fuction approximates an
exponential function with two linear functions.
I chose the fixpoints so, that the longest period is 4 seconds
and the shortest 20 milliseconds.

